Filtration of histogram evaluation of probability density based on fuzzy data accessibility to a grouping interval
https://doi.org/10.35596/1729-7648-2021-19-4-13-20
Abstract
The paper proposes a histogram estimate of the probability density based on fuzzy data belonging to a grouping interval. A methodology for constructing a histogram estimate using a histogram smoothing filter is presented. The technique of constructing such a filter is described. The main filter parameter is established – the coefficient of the statistical relationship between the amount of data falling into the grouping interval for a single inclusion function and when approaching to use the membership function. The use of an iterative procedure for a histogram filter allows for a greater “smoothness” of the histogram. The simulation results show the effectiveness of using a histogram filter for different data volumes. At the same time, the choice of the number of grouping intervals for the “correct” recognition of probability density becomes not critical. The histogram filter is a simple tool that can easily be built into any algorithm for constructing histogram estimates.
About the Authors
A. V. AusiannikauBelarus
Ausiannikau Andrei Vital’evich, PhD, Associate Professor, Associate Professor at the Information Technologies Department
220030, Republic of Belarus, Minsk, Nezavisimosti avе., 4
tel. +375-17-209-58-94
V. M. Kozel
Belarus
Victor M. Kozel, PhD, Associate Professor, Associate Professor at the Information Radiotechnologies Department
Minsk
References
1. Orlov Yu.N. [Optimal histogram partitioning for estimating the sample density of the distribution function of an unsteady time series]. Preprinty IPM im. M.V. Keldysha = Preprints of the Institute of Applied Mathematics M.V. Keldysh RAS. 2013;14:26. (in Russ.)
2. Chong Gu, Yongho Jeon and Yi Lin. Nonparametric density estimation in high-dimensions. Statistica Sinica. 2013;23:1131-1153.
3. Orlov A.I. [The new paradigm of applied statistics]. Zavodskaya laboratoriya. Diagnostika materialov = Industrial Laboratory. Diagnostics of Materials. 2012;78(11). (in Russ.)
4. Devroye L. and Gyorfi L. Nonparametric Density Estimation: The L1 View. New York: John Wiley Sons; 1985.
5. Gonzalez R. Digital Image Processing, 3rd. Pearson Hall; 2008.
6. Solomon C.J., Breckon T.P. Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab. Wiley-Blackwell; 2010. DOI:10.1002/9780470689776.
7. Gonzalez R. Digital image processing. New York, NY: Pearson; 2018.
8. Ovsyannikov A.V. [The use of stochastic shaping filters]. Germany, KG, Saarbrücken: LAP LAMBERT Academic Publishing, OmniScriptum GmbH & Co; 2017. (in Russ.)
9. Bernd J. Digital Image Processing (6 ed.). Springer Berlin Heidelberg New York; 2005.
10. Chakravorty Pragnan. What is a Signal? [Lecture Notes]. IEEE Signal Processing Magazine. 35 (5):175-177. DOI: 10.1109/MSP.2018.2832195.
Review
For citations:
Ausiannikau A.V., Kozel V.M. Filtration of histogram evaluation of probability density based on fuzzy data accessibility to a grouping interval. Doklady BGUIR. 2021;19(4):13-20. (In Russ.) https://doi.org/10.35596/1729-7648-2021-19-4-13-20