Preview

Doklady BGUIR

Advanced search

Method of optimization of the robot-manipulator position in the technological process of laser cutting

Abstract

A promising direction for the production processes modernization which uses laser cutting of metal blanks is the creation of the robotic lines that perform cutting operations with high productivity and accuracy. Modern robotic manipulators with rotational axes allow to orientate the tool quite effectively when performing laser cutting operations, however, their widespread adoption isconstrained by the low efficiency of the known approaches to the layout of robotic lines. Such approaches are based on the use of standard design solutions with a further search for the robot links movements by trial and error, and often do not allow to ensure the required quality of the cutting tool path. In this paper, we propose a new technique for optimizing the robot-manipulator position relative to the cutting contour, which takes into account, compared with known approaches, constraints on  the  possibilities  of  the  cutting  tool  movements,  as  well  as kinematic  and  geometric  constraints  on  the movements of the robot itself. The proposed technique is based on a kinematic model of a robot manipulator and a cutting tool and allows finding the coordinates of the robot manipulator base position, at which it can move the cutting  tool  along  the  cutting  contour  with  a  minimum  range  of movements  in  the  joints.  The  search  of  the optimal  coordinates  of  the  robotic  manipulator  base  position  iscarried out in two stages. At the first stage, the area of admissible values of the coordinates of the base isdiscretized with a certain step and for each discrete value  it  is  a  trajectory  sought  on  which  the  range  of  movements in  the  joints  of  the  robot  is  minimized. This allows to take into account technological constraints on the orientation of the cutting tool relative to the cutting  contour,  as  well  as  kinematic  and  geometric  restrictions  on  the  movements  of  the  robot  manipulator. At the second stage a position of the base is selected which corresponds to the minimal volume of movement when  the  technological  tool  is  moving  along  the  cutting  contour.  The  effectiveness  of  the  proposed  method is demonstrated on model examples. The technique can be used inthe design of new layouts of robotic systems for laser cutting of metal blanks for mechanical engineering enterprises.

About the Authors

M. M. Kazheunikau
Mogilev State University of Food Technologies
Belarus

Kazheunikau Mikhail Mikhailovich, PhD, Associate Professor, Head of  the  Department  of  Automation  of  Technological Processes  and  Production

212027, Mogilev, Shmidta str., 3

tel. +375-29-240-75-99



O. A. Chumakou
Belorussian State University of Informatics and Radioelectronics
Belarus

PhD,  Associate  Professor, Associate  Professor  of  the  Control  System Department



I. E. Iliushin
Mogilev State University of Food Technologies
Russian Federation

Senior  Lecturer  at  the  Department of Automation  of Technological  Processes  and Production 

212027, Mogilev, Shmidta str., 3

tel. +375-29-240-75-99



А. А. Jurkina
Mogilev State University of Food Technologies
Russian Federation

Postgraduate  student  at  the Department  of  Automation  of Technological Processes  and  Production 

212027, Mogilev, Shmidta str., 3

tel. +375-29-240-75-99



References

1. Groover M. P. Automation, Production Systems and Computer-Integrated Manufacturing. 4th edition. Upper Saddle River, NJ: Prentice Hall; 2015.

2. Moslemipour G., Lee T., Rilling D. A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology. 2012;60(1):11-27. DOI: 10.1007/s00170-011-3614-x.

3. Dolgui А., Pashkevich A. Manipulator motion planning for high speed robotic laser cutting. International Journal of Production Research. 2009;47(20):5691-5715. DOI:. 10.1080/00207540802070967.

4. Moharana B., Gupta R., Kushawaha B. Optimization and Design of a Laser-Cutting Machine using Delta Robot. International Journal of Engineering Trends and Technology. 2014;10(4): 176-179. DOI:. 10.14445/22315381/IJETT-V10P233.

5. Geiger M., Kach A. Integration ofLaser Material Processing into the Computer-Aided Product and Process Development. Proceedings of the 3rd International Conference on Integrated Design and Manufacturing in Mechanical Engineering.2000:69. DOI: 10.1007/978-94-015-9966-5_31.

6. Dolgui А., Pashkevich A. Manufacturing process planning for laser cutting robotic systems. Proceedings of the 17th World Congress The International Federation of Automatic Control. 2008:14822-14827. DOI: 10.3182/20080706-5-KR-1001.02509.

7. Qiao S., Liao Q., Wei S., Su H.J. Inverse kinematic analysis ofthe general 6R serial manipulators based on double quaternions. Mechanism and Machine Theory.2010;45(2):19-199. DOI: 10.1016/j.mechmachtheory.2009.05.013.

8. Pashkevich A.P., Dolgui A.B., Chumakov O.A. Multiobjective optimization of robot motion for laser cutting applications. International Journal of Computer Integrated Manufacturing. 2004;17:171-183. DOI: 10.1080/0951192031000078202.

9. Kazheunikau M.M., Chuakou O.A., Shemenkov V.M., Iliushin I.E. [Methods and algorithms for planning trajectories of robotic manipulators for laser cutting]. Vestnk BRU. 2019;2:4-13. (In Russ.)

10. Kazheunikau M.M., Chumakou O.A., Shemenkov V.M., Iliushin I.E.,Jurkina A.A. [Trajectory optimization of industrial robotic manipulators for laser cutting]. Vestnk BRU. 2020;2(67):21-30. (In Russ.)


Review

For citations:


Kazheunikau M.M., Chumakou O.A., Iliushin I.E., Jurkina А.А. Method of optimization of the robot-manipulator position in the technological process of laser cutting. Doklady BGUIR. 2021;19(3):49-57. (In Russ.)

Views: 541


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)