Preview

Doklady BGUIR

Advanced search

Design of a discrete сosine transformation processor for image compression systems on a losless-to-lossy circuit

https://doi.org/10.35596/1729-7648-2021-19-3-5-13

Abstract

Today, mobile multimedia systems that use the H.261 / 3/4/5, MPEG-1/2/4 and JPEG standards for encoding / decoding video, audio and images are widely spread [1–4]. The core of these standards is the discrete cosine  transform  (DCT)  of  I,  II,  III  ...  VIII  types  [DCT].  Wide support  in  a  huge  number  of  multimedia applications of the JPEG format by circuitry and software solutions and the need for image coding according to the  L2L  scheme  determines  the  relevance  of  the  problem  of  creating  a  decorrelated  transformation  based  on DCT and methods for rapid prototyping of processors for computing an integer DCT on programmable systems on a FPGA chip. At the same time, such characteristics as structural regularity, modularity, high computational parallelism,  low  latency  and  power  consumption  are  taken  into  account.  Direct  and  inverse  transformation should be carried out according to the “whole-to-whole” processing scheme with preservation of the perfective reconstruction  of  the  original  image  (the  coefficients  are  represented  by  integer  or  binary  rational  numbers; the number of multiplication operations is minimal, if possible, they are excluded from the algorithm). The wellknown  integer  DCTs  (BinDCT,  IntDCT)  do  not  give  a  complete  reversible  bit  to  bit  conversion.  To  encode an image  according  to  the  L2L  scheme,  the  decorrelated  transform must be reversible and implemented in integer  arithmetic,  i. e.  the  conversion  would  follow  an  “integer-to-integer”  processing  scheme  with  a minimum  number  of  rounding  operations  affecting  the  compactness of  energy  in  equivalent  conversion subbands. This article shows how, on the basis of integer forward and inverse DCTs, to create a new universal architecture of decorrelated transform on FPGAs for transformational image coding systems that operate on the principle of “lossless-to-lossy” (L2L), and to obtain the best experimental results for objective and subjective performance compared to comparable compression systems.

About the Author

V. V. Kliuchenia
Belarusian State University Informatics and Radioelectronics
Belarus

Kliuchenia VitalyVasil’evich, PhD,  Associate  Professor at  the  Electronic  Computing  Department 

220013, Minsk, P. Brovka str., 6

tel. +375-29-701-54-89



References

1. Pennebaker W. B. JPEG: Still image compression standard.New York: Van Nostrand Reinhold; 1993.

2. Weinberger J. LOCO-I: a low complexity, context-based, losslessimage compression algorithm. Proceedings of the Data CompressionConference (DC’96). Snowbird, UT, 31 March – 03 April 1996: 140-149.

3. Skodras A. The JPEG2000 still image compression standard. IEEE Trans. Signal Process. Mag. 2001;18(5):36-58.

4. Dufaux F. The JPEG XR image coding standard. IEEE Signal Process. Mag. 2009;26(6):195-199.

5. Suzuki T. Integer DCT Based on Direct-Lifting of DCT-IDCT for Lossless-to-Lossy Image Coding. IEEE Transactions on image processing.November 2010;19(11):2958-2965.

6. Suzuki T. Integer fast lapped transforms based on direct-lifting of DCTs for lossy-to-lossless image coding. EURASIP Journal on Image and Video Processing.2013;1:1-9.

7. Vaidyanathan P.P. Multirate systems and filter banks. Prentice-Hall, Englewood Cliffs, NJ, USA; 1993.

8. Suzuki T. Realization of lossless-to-lossy ima1ge coding compatible with JPEG standard by direct-lifting of DCT-IDCT. Proceedings of the 17th IEEE Intern. Conf. on Image Processing (ICIP’2010), Hong Kong 26 – 29 September, 2010: 389-392.

9. Chokchaitam S. A new unified 2D-DCT accelerator lossless/lossy image compression based on a new integer DCT. IEICE Trans. Inf. Syst. Feb. 2005;Vol. E88-D (2):403-413.

10. Fukuma S. Lossless 8-point fast discrete cosine transform usinglossless Hadamard transform. Tech. Rep. IEICE, DSP99-103. October 1999: 37-44.

11. Liang J. Fast multiplierless approximations of the DCT with the lifting scheme. IEEE Transaction on Signal Processing. Dec. 2001;49(12):3032-3044.

12. Komatsu K. Reversible discrete cosine transform. Processing International Conference Acoustic, Speech, Signal Processing. Seattle, WA. May 1998: 1769-1772.


Review

For citations:


Kliuchenia V.V. Design of a discrete сosine transformation processor for image compression systems on a losless-to-lossy circuit. Doklady BGUIR. 2021;19(3):5-13. (In Russ.) https://doi.org/10.35596/1729-7648-2021-19-3-5-13

Views: 629


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)