Сomparative analysis of the change of oxygen nonstoichiometry and superstructural ordering of Fe/Mo cations in the strontium ferromolybdate
https://doi.org/10.35596/1729-7648-2021-19-2-14-21
Abstract
Sr2FeMoO6–δ single-phase samples without Fe/Mo cations superstructural ordering (P) and with Curie temperature 407 K were obtained by the solid-phase technique. According to the XRD data, the growth dynamics of the parameter P is nonlinear. In this case, the process of reaching maximum values of P (Pmax) is long and its rate is several times lower than the change of the oxygen index 6–δ. It was found that with increasing temperature of isothermal annealing, P increases and reaches maximal values 88 % at T = 1320 K for 120 h, Pmax = 92 % at T = 1420 K for 100 h, while Pmax = 90 % at T = 1470 K for 45 h. One can assume that the lower values of Pmax at T = 1470 K than at T = 1420 K are due to the influence of thermal energy on the destruction of chain ordering of Fe and Mo cations placed in staggered order. Based on the analysis of P time dependences, two relaxation processes can be found and the dP/dt = ¦(t) can be divided into two regions – I and II. In the region I the relaxation time is shorter than that in the region II. The point is that the ordering of cations in the –O–Fe–O–Mo–O chains in the region I requires atomic displacements by approximately one interatomic distance, whereas in the region II cation displacements occur over long distances with the formation of long[1]chain long-range ordering.
About the Authors
L. I. HurskiBelarus
Hurski Leonid Ilyich - Corresponding Member of the NAS of Belarus, D.Sc., Professor, Main Researcher at the Centre 10.1
220013, Minsk, P. Brovka , 6
tel. +375-17-293-85-17
N. A. Kalanda
Belarus
PhD, Leading Researcher at the Department of Cryogenic Research
М. V. Yarmolich
Belarus
PhD, Senior Researcher at the Department of Cryogenic Research
А. V. Petrov
Belarus
PhD, Senior Researcher at the Department of Cryogenic Research
D. A. Golosov
Belarus
PhD, Assosiate Professor at the Department of Electronic Engineering and Technology
М. V. Kirosirova
Belarus
Leading Engineer
О. V. Ignatenko
Belarus
PhD, Deputy General Director, Head of the Laboratory of High Pressure Physics and Superhard Materials
А. L. Zhaludkevich
Belarus
Researcher at the Laboratory of High Pressure Physics and Superhard Materials
References
1. Serrate D., De Teresa J.M., Ibarra M. R. Double perovskites with ferromagnetism above room temperature. Journal of Physics: Condensed Matter. 2007;19:1-86. DOI: 10.1088/0953–8984/19/2/023201.
2. Topwal D., Sarma D.D., Kato H., Tokura Y., Avignon M. Structural and magnetic properties of Sr2Fe1+xMo1−xO6 (−1<x<0,25). Physical Review B. 2006;73:0944191-0944195. DOI:10.1103/PhysRevB.73.094419.
3. Chan T.S., Liu R.S., Hu S.F., Lin J.G. Structure and physical properties of double perovskite compounds Sr2FeMO6 (M = Mo, W). Materials chemistry and physics. 2005;93(2-3):314-319. DOI:10.1016/j.matchemphys.2005.03.060.
4. Cibert J., Bobo J.F., Lüders U. Development of new materials for spintronics. Comptes Rendus Physique. 2005;6(9): 977-996. DOI:10.1016/j.crhy.2005.10.008.
5. Kovalev L.V., Yarmolich M.V., Petrova M.L., Ustarroz J., Terryn H.A., Kalanda N.A., Zheludkevich M.L. Double perovskite Sr2FeMoO6 films prepared by electrophoretic deposition. ACS Applied Materials & Interfaces. 2014;6(21):9201-19206. DOI: 10.1021/am5052125.
6. Kalanda N., Kim, D.H., Demyanov S., Yu S.C., Yarmolich M., Petrov A., Oh S.K. Sr2FeMoO6 nanosized compound with dielectric sheaths for magnetically sensitive spintronic devices. Current Applied Physics. 2018;18(1):27-33. DOI:10.1016/j.cap.2017.10.018.
7. Kalanda N., Demyanov S., Masselink W., Mogilatenko A., Chashnikova M., Sobolev N., Fedosenko O. Interplay between phase formation mechanisms and magnetism in the Sr2FeMoO6 metal–oxide compound. Crystal Research and Technology. 2011;46(5):463-469. DOI: 10.1002/crat.201000213.
8. Allub R., Navarro O., Avignon M., Alascio B. Effect of disorder on the electronic structure of the double perovskite Sr2FeMoO6. Physica B: Condensed Matter. 2002;320(1-4):13-17. DOI: 10.1016/S0921-4526(02)00608-7.
9. Hurski L.I., Kalanda N.A., Yarmolich M.V., Turchenko V.A., Karpinsky D.V., Chumak V.A., Petrov A.V., Zhaludkevich A.L. Interrelation between oxygen non–stoichiometry and Fe/Mo superstructural ordering in Sr2FeMoO6–d. Doklady BGUIR = Doklady BGUIR. 2017;(8):54-59. (In Russ.).
10. Rager J., Zipperle M., Sharma A., MacManus-Driscoll J.L. Oxygen stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO – Fe3O4 – MoO3. Journal of the American Ceramic Society. 2004; 87: 1330–1335. DOI:10.1111/j.1151–2916.2004.tb07730.x.
11. Zhou J.P., Dass R., Yin H.Q., Zhou J.S., Rabenberg L., Goodenough J.B. Enhancement of room temperature magnetoresistance in double perovskite ferrimagnets. Journal of Applied Physics. 2000;87(9):5037-5039. DOI: 10.1063/1.373240.
12. Kraus W., Nolze G.W. Powder Cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996;29(3):301-303. DOI:10.1107/S0021889895014920.
Review
For citations:
Hurski L.I., Kalanda N.A., Yarmolich М.V., Petrov А.V., Golosov D.A., Kirosirova М.V., Ignatenko О.V., Zhaludkevich А.L. Сomparative analysis of the change of oxygen nonstoichiometry and superstructural ordering of Fe/Mo cations in the strontium ferromolybdate. Doklady BGUIR. 2021;19(2):14-21. (In Russ.) https://doi.org/10.35596/1729-7648-2021-19-2-14-21