Doklady BGUIR

Advanced search

Correlation between the potential electromagnetic pollution level and the danger of COVID-19. 4G/5G/6G can be safe for people

Full Text:


The paper considers a hypothesis concerned the possible influence of electromagnetic pollution of the environment on the lethality rate of the population from coronavirus infection, along with other factors. The hypothesis is indirectly confirmed by the correlation between the degree of rigidity of hygienic regulations of radio frequency electromagnetic background levels for the population, which are mainly created by mobile (cellular) communication systems, and the lethality rate from COVID-19 in various countries. A special measures to ensure the safety of rapid development of technologies, systems and services for mobile communications of the fourth (4G), fifth (5G), and, by 2030, the sixth (6G) generation, associated with an increase by several orders of magnitude in the number of radiating devices, the data transmission rates over radio frequency channels and the area capacity of mobile traffic, are discussed. For quantitative analysis of these processes, a practical method of worst-case estimation of electromagnetic background level generated by these systems has been developed, verified using the results of numerous measurements of the electromagnetic background in various countries, and described in this paper. This technique is based on the use of the integrated system characteristics of wireless information services and makes it possible to justify the necessary system, technical and managerial solutions aimed at ensuring the necessary level of electromagnetic ecology of populous areas and electromagnetic safety of people in conditions of rapid advancement of 4G/5G/6G systems without affecting the quality of informational support of the population and information technologies in economy, education, healthcare and other sectors.

About the Author

V. I. Mordachev
Belarusian State University of Informatics and Radioelectronics

Mordachev Vladimir Ivanovich, PhD, Associate Professor, Leading Researcher of the R&D laboratory «Electromagnetic compatibility of radioelectronic systems»

220013, Minsk, P. Brovka str., 6, tel. +375-17-293-84-38


1. Ozdemir A.R., Alkan M., Gulsen M. Time Dependence of Environmental Electric Field Measurements and Analysis of Cellular Base Stations. IEEE EMC Magazine. 2014;3:43-48.

2. Burgi A., Theis G., Siegenthaler A., Roosli M. Exposure modeling of high-frequency electromagnetic fields. J Expo Sci Environ Epidemiol. 2008;18:183-191.

3. Gajsek P., Ravazzani P., Wiart J., Grellier J., Samaras T., Thuroczy G. Electromagnetic field exposure assessment in Europe radiofrequency fields (10MHz–6GHz). J Expo Sci Environ Epidemiol. 2015;25:37-44.

4. Ibrani M., Hamiti E., Ahma L., Halili R., Dragusha B. Comparative Analysis of Downlink Signal Levels Emitted by GSM 900, GSM 1800, UMTS, and LTE Base Stations. 16th Annual Mediterranean Ad Hoc Networking Workshop, Budva, Montenegro, June 28-30, 2017: 5.

5. Joseph W., Verloock L., Goeminne F., Vermeeren G., Martens L. Assessment of RF exposures from emerging wireless communication technologies in different environments. Health Physics. 2012;102(2):161-172.

6. Rowley J.T., Joyner K.H. Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations. J Expo Sci Environ Epidemiol. 2012;22:304-315.

7. Gotsis A., Papanikolaou N., Komnakos D., Yalofas A., P.Constantinou. Non-ionizing electromagnetic radiation monitoring in Greece. Ann. Telecommun. 2008;63:109-123.

8. Troisi F., Boumis M., Grazioso P. The Italian national electromagnetic field monitoring network. Ann. Telecommun. 2008;63:97-108.

9. Tomitsch J., Dechant E. and Frank W. Survey of Electromagnetic Field Exposure in Bedrooms of Residences in Lower Austria. Bioelectromagnetics. 2010;31:200-208.

10. Rufo M., Paniagua J., Jimenez A., Antolín A. Exposure to high-frequency electromagnetic fields (100 KHZ–2 GHZ) in Extremadura (Spain). Health Physics Society. 2011.

11. Karpowicz J., Miguel-Bilbao S., Ramos V., Falcone F., Gryz K., Leszko W., Zradziński P. The evaluation of Stationary and Mobile Components of Radiofrequency Electromagnetic Exposure in the Public Accessible Environment. Proc. of the Intern. Symp. on EMC "EMC Europe 2017", Angers, France, Sept. 4-8, 2017: 4.

12. Grigoriev O.A. Actual Issues of Radiobiology and Hygiene of Non-Ionizing Radiation in Connection With the Development of New Technologies. Proc. of the scientific conf. "Actual Issues of Radiobiology and Hygiene for Non-Ionizing Radiations", Moscow, Russia, Nov. 12-13, 2019: 3. (on-line resource, in Russ.).

13. Guidelines for evaluation of radio interface technologies for IMT-Advanced. Report ITU-R M.2135-1; 2009: 12.

14. Ericsson Mobility Report. Nov. 2019. (on-line resource).

15. LTE-Advanced (3GPP Rel.12). Technology Introduction. White Paper, 2015. https://www.1ma252_wp_lte_rel12_2e.pdf, (on-line resource).

16. IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond. Rec. ITU-R M.2083, 2015.

17. Understanding 5G: Perspectives on future technological advancements in mobile GSMA Intelligence. Dec. 2014. (on-line resource).

18. Fundamentals of 5G Mobile Networks. Edited by J. Rodriguez. John Wiley & Sons; 2015: 293.

19. Zhang Z., Xiao Y., Ma Z., Xiao M., Ding Z., Lei X., Karagiannidis G.K. and Fan P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE VT Magazine. 2019;14(3):28-41.

20. Strinati E.C., Barbarossa S., Josй Luis Gonzalez-Jimenez J.L., Ktenas D., Cassiau N., Maret L., Dehos C. 6G: the Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE VT Magazine. 2019;14(3):42-50.

21. Confédération suisse. Initiative populaire fédérale "Pour une téléphonie mobile respectueuse de la santé et économe en énergie".

22. Effets sanitaires éventuels liés aux valeurs élevées de débit d’absorption spécifique de téléphones mobiles portés près du corps. Anses Rapport d’expertise collective. Téléphones mobiles portés près du corps et santé. Édition scientifique. Juillet 2019: 128.

23. Le Gouvernement agit pour limiter l’exposition aux émissions de certains téléphones mobiles et mieux informer le public. Communiqué de Presse Paris, le 25 Octobre.

24. ICNIRP RF EMF Guidelines 2020. March 2020. (on-line resource).

25. Grigoriev O., Goshin M., Prokofyeva A., Alekseeva V. [Features of national policy in approaches to electromagnetic field safety of radio frequencies radiation in different countries]. Gigiena i Sanitaria = Gigiena i Sanitaria. 2019;98(11) (In Russ.). DOI:

26. Belpomme D., Hardell L., Belyaev I., Burgio E., Carpenter D.O. Thermal and nonthermal health effects of low intensity non-ionizing radiation: An international perspective. Environ Pollut. 2018;242(Pt A):643-658.

27. Volkow N.D., Tomasi D., Wang G.F., Vaska P., Fowler J.S., Teland F. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. J Am Med Assoc. 2011;305(8):808-814.

28. Johansen C., Boice Jr., McLaughlin J., Olsen J. Cellular telephones and cancer – a nationwide cohort study in Denmark. J Natl Cancer Inst. 2001;93:203-207.

29. Divan H.A., Kheifets L., Obel C., Olsen J. Prenatal and postnatal exposure to cell phone use and behavioral problems in children. Epidemiology. 2008;19:523-529.

30. Lukyanova S.N. [Microwave Electromagnetic field of non-thermal intensity as an irritant for the central nervous system]. Moscow, Russia: SRC – FMBC; 2015. (in Russ.)

31. Agarwal A., Desai N.R., Makker K., Varghese A., Mouradi R., Sabanegh E. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92:1318-1325.

32. Avendaño C., Mata A., Sanchez Sarmiento C.A., Doncel G.F. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril. 2012;97(1):39-45.e2. DOI: 10.1016, j.fertnstert. 2011.10.012. Epub 2011 Nov 23. PMID: 22112647.

33. Havas M. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health. 2013;28:75-84.

34. Saili L., Hanini A., Smirani C., Azzouz I., Azzouz A., Sakly M. Effects of acute exposure to WiFi signals (2.45 GHz) on heart variability and blood pressure in albino rabbits. Environ Toxicol Pharmacol. 2015;40:600-605.

35. Grigoriev Y.G., Grigoriev O.A., Ivanov A.A., Lyaginskaya A.M., Merkulov A.V., Stepanov V.S. [Autoimmune process after long-term low-level exposure to electromagnetic field (experimental results). P. 1. Mobile communications and changes in electromagnetic conditions for the population: need for additional substantiation of existing hygienic standards]. Radiatsionnaya biologiya. Radioekologiya = Radiatsionnaya biologiya. Radioekologiya. 2010;50(1):5-11. (in Russ.)

36. Sannino A., Zeni O., Romeo S., Massa R., Gialanella G., Grossi G. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage. J Radiat Res. 2014;55:210-217.

37. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. WHO, Press Release; 2011: 208.

38. WHO COVID-19 Situation Report – 105 for May 04. Johns Hopkins Center for Health Security (on-line resource).

39. WHO COVID-19 Situation Report – 112 for May 11. Johns Hopkins Center for Health Security (on-line resource).

40. WHO COVID-19 Situation Report – 119 for May 18. Johns Hopkins Center for Health Security (on-line resource).

41. Mordachev V. Mathematical Models for Radiosignals Dynamic Range Prediction in Space-Scattered Mobile Radiocommunication Networks. The IEEE Semi Annual VTC Fall 2000, Boston, Sept. 24-28, 2000.

42. Mordachev V., Loyka S. On Node Density – Outage Probability Tradeoff in Wireless Networks. IEEE Journal on Selected Areas in Communications. 2009;27(7):1120-1131.

43. Mordachev V. [System ecology of cellular communications]. Belarus State University Publishers; 2009: 319. (in Russ.)

44. Mordachev V. Worst-Case Models of Electromagnetic Background Created by Cellular Base Stations. Proc. of the 9th Int. Wireless Communications & Mobile Computing Conference (IWCMC), Cagliari, Sardinia, Italy, July 1-5, 2013: 590-595.

45. Mordachev V. Worst-Case Estimation of Electromagnetic Background Created by Cellular Mobile Stations Near Ground Surface. Proc. of the Int. Symp. “EMC Europe 2014”, Gothenburg, Sweden, Sept. 1-4, 2014: 1275-1280.

46. Mordachev V. Worst-Case Estimation of Electromagnetic Background Near Ground Surface Created by Heterogeneous Radioelectronic Environment. Proc. of the EMC Joint IEEE Int. Symp. on Electrom. Compat. and “EMC Europe”, Dresden, Germany, Aug. 16-22, 2015: 1147-1152.

47. Mordachev V. Electromagnetic Background Created by Base and Mobile Radio Equipment of Cellular Communications. Proc. of the Int. Symp. “EMC Europe 2016”, Wroclaw, Poland, Sept. 5-9, 2016: 590-595.

48. Mordachev V. System-Level Estimation of Prevailing Levels of EM Fields of Mobile Phones Considering Near-Field Zone Limitations of Their Antennas. Proc. of the Int. Symp. "EMC Europe 2017", Angers, France, Sept. 4-8, 2017: 6. (paper No.64).

49. Mordachev V. [Verification of the worst case model for the estimation of average intensity of the electromagnetic background created by base stations of cellular communications]. Doklady BGUIR = Doklady BGUIR. 2018;1(111):12-18. (in Russ.)

50. Mordachev V. Restrictions on Wideband Systems of Mobile Communications of New Generations at Declared Expansion of Data Transfer Rates. Proc. of the Int. Symp. “EMC Europe 2018”, Amsterdam, The Netherlands, Aug.27-30, 2018: 202-207.

51. Mordachev V. Estimation of Electromagnetic Background Intensity Created by Wireless Systems in Terms of the Prediction of Area Traffic Capacity. Proc. of the Int. Symp. “EMC Europe 2019’, Barcelona, Spain, Sept. 2-6, 2019: 82-87.

52. Mordachev V. Verification of Worst-Case Analytical Model for Estimation of Electromagnetic Background Created by Mobile (Cellular) Communications, Proc. of the Int. Symp. “EMC Europe 2020”, Rome, Italy, Sept. 7-11, 2020: 6 p. (accepted).

53. Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. Rec. ITU-R P.1411-8.

54. Louail, Lenormand M., Cantu Ros O.G., Picornell M., Herranz R., Frias-Martinez E., Ramasco J.J., Barthelemy M.. From mobile phone data to the spatial structure of cities. Scientific Reports. 4: 5276. DOI: 10.1038/srep05276/ (on-line resource).

55. Kelsh M.A., Shum M., F, Sheppard A.R., Mcneely M., Kuster N., Lau E., Weidling R, Fordyce T., Kuhn S. and Sulser C. Measured radiofrequency exposure during various mobile-phone use scenarios. J Expo Sci Environ Epidemiol. 2011;21:343–354.

56. Propagation statistics required for broadcasting services using the frequency range 30 to 1000 MHz. Report ITU-R 239-7; 1990: 304.

57. Radio-Paging Systems. Report ITU-R 499-5; 1990: 59.

58. A.F. de Toledo, A.M.D.Turkmani, Propagation into and within buildings at 900, 1800 and 2300 MHz. Proc. Of IEEE Vehicle Technology Conf., 1992: 633-636.

59. Mordachev V.I. [Frequency-independent limits of values of system parameters of cellular communications at multipath propagation of radio waves in urban area]. Doklady BGUIR = Doklady BGUIR. 2019;7-8(126):117-124. (in Russ.)

For citation:

Mordachev V.I. Correlation between the potential electromagnetic pollution level and the danger of COVID-19. 4G/5G/6G can be safe for people. Doklady BGUIR. 2020;18(4):96-112.

Views: 2162

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)