Preview

Doklady BGUIR

Advanced search

Avalanche leds based on nanostructured silicon for optical interconnections

https://doi.org/10.35596/1729-7648-2020-18-3-63-71

Abstract

The paper analyzes the parameters of silicon avalanche LEDs and their use for electron-optical signal transmission systems. The advantages of silicon avalanche LEDs are shown, among which high speed and compatibility with silicon technology should be highlighted. Experimental avalanche LEDs based on nanostructured silicon were fabricated and studied. The results of controlling the electroluminescence spectrum of avalanche LEDs due to the choice of production conditions to form nanostructured silicon are presented. It was found that the temperature of the substrate during the deposition of the surface nanocomposite aluminum + silicon film affected the size of the formed silicon nanoparticles determining the spectral characteristics of avalanche LEDs. This allows shifting the maximum of their emission spectrum to a shorter wavelength region of the visible range due to the forming of smaller silicon nanoparticles. The authors have developed an optical interconnection system consisting of avalanche LEDs based on nanostructured silicon and a microchannel silicon wafer used to transmit a light signal. The study of various operating modes of the developed optoelectronic system was performed and an increase in the efficiency of optocouple based on avalanche LEDs to 0.2% due to the pulsed operating mode was achieved. It is shown that the efficiency of the optocouple increases with LED current and it is the pulsed mode of its operation that is characterized by the maximum current, which is due to more efficient removal of Joule heat in the intervals between pulses, ensuring stable operation of the entire system. The results obtained open up new opportunities for the development of optical interconnections between silicon chips and silicon optoelectronics in general.

About the Authors

Le Dinh Vi
Belarusian State University of Informatics and Radioelectronics
Belarus

Le Dinh Vi - PG student of Micro- and nanoelectronics Department of Belarusian State University of Informatics and Radioelectronics.

220013, Minsk, P. Brovka str., 6.



A. A. Leshok
Belarusian State University of Informatics and Radioelectronics
Belarus

Andrei A. Leshok - PhD, Head of Center 4.11 of Belarussian State University of Informatics and Radioelectronics.

220013, Minsk, P. Brovka str., 6.



A. V. Dolbik
Belarusian State University of Informatics and Radioelectronics
Belarus

Alexander V. Dolbik - Research Worker of laboratory 4.12 of R&D Department of Belarusian State University of Informatics and Radioelectronics.

220013, Minsk, P. Brovka str., 6.



S. L. Perko
Belarusian State University of Informatics and Radioelectronics
Belarus

Sergey L. Perko - PG student of Micro- and nanoelectronics Department of Belarusian State University of Informatics and Radioelectronics.

220013, Minsk, P. Brovka str., 6.



S. K. Lazarouk
Belarusian State University of Informatics and Radioelectronics
Belarus

Sergey K. Lazarouk - DSci., Head of laboratory 4.12 of R&D Department of Belarusian State University of Informatics and Radioelectronics.

220013, Minsk, P. Brovka str., 6.



References

1. Newman R. Visible light from a silicon p-n junction. Physical Review. 1955;100(2):700-703. DOI: 10.1103/PhysRev.100.700.

2. Chynoweth A., McKay K. Photon emission from avalanche breakdown in silicon. Physical Review. 1956;102(2):369-376. DOI: 10.1103/PhysRev.102.369.

3. Richter A., Steiner P., Kozlowski F., Lang W. Current-induced light emission from a porous silicon device. IEEE Electron Device Letters. 1991;12(12):691-692. DOI: 10.1109/55.116957.

4. Lazarouk S., Jaguiro P., Katsouba S., Masini G., La Monica S., Maiello G., Ferrari A. Stable electroluminescence from reverse biased n-type porous silicon-aluminum Schottky junction device. Applied Physics Letters. 1996; 68(15): 2108-2110. DOI: 10.1063/1.115892.

5. Lazarouk S., Baturevich A. [Perspectives of avalanche light emitting diodes based on porous silicon for optical interconnects]. Izvestija Belorusskoj inzhenernoj akademii = Belarus Engineering Academy Letters. 1999;7(01&02):147-149. (In Russ.)

6. Lazarouk S., Jaguiro P., Leshok A., Borisenko V. Avalanche porous silicon light emitting diodes for optical intra-chip interconnects. Microelectronics, Microsystems and Nanotechnology. World Scientific. 2001;MMN2000:41-44. DOI: 10.1142/9789812810861_0009.

7. Lazarouk S., Leshok A., Labunov V., Borisenko V. Efficiency of avalanche light-emitting diodes based on porous silicon. Semiconductors. 2005;39(1):136-138. DOI: 10.1134/1.1852663.

8. Kuznetsov V., Andrienko I., Haneman D. High efficiency blue-green electroluminescence and scanning tunneling microscopy studies of porous silicon. Applied Physics Letters. 1998;72(25):3323-3325. DOI: 10.1063/1.121592.

9. Gelloz B., Nakagawa T., Koshida N. Enhancement of the quantum efficiency and stability of electroluminescence from porous silicon by anodic passivation. Applied Physics Letters. 1998;73(14):2021-2023. DOI: 10.1063/1.122355.

10. Karsenty A., Sa'ar A., Ben-Yosef N., Shappir J. Enhanced electroluminescence in silicon-on-insulator metal -oxide - semiconductor transistors with thin silicon layer. Applied Physics Letters. 2003;82(26):4830-4832. DOI: 10.1063/1.1587877.

11. Chatterjee A., Bhuva B., Schrimpf R. High-speed light modulation in avalanche breakdown mode for Si diodes. IEEE Electron Device Letters. 2004;25(9):628-630. DOI: 10.1109/LED.2004.834247.

12. Snyman L.W., Aharoni H., Du Plessis M. A dependency of quantum efficiency of silicon CMOS n/sup+/pp/sup+/LEDs on current density. IEEE Photonics Technology Letters. 2005;17(10):2041-2043. DOI: 10.1109/LPT.2005.856448.

13. Snyman L.W., Du Plessis M., Aharoni H. Injection-avalanche-based n+ pn silicon complementary metal-oxide-semiconductor light-emitting device (450-750 nm) with 2-order-of-magnitude increase in light emission intensity. Japanese journal of Applied physics. 2007;46(4B):2474-2480. DOI: 10.1143/JJAP.46.2474.

14. Du Plessis M., Venter P.J., Bellotti E. Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions. IEEE Journal of Quantum Electronics. 2013;49(7):570-577. DOI: 10.1109/JQE.2013.2260724.

15. Kulakci M., Turan R. Improvement of light emission from Tb-doped Si-based MOS-LED using excess Si in the oxide layer. Journal of Luminescence. 2013;137:37-42. DOI: 10.1016/j.jlumin.2012.11.005.

16. Ogudo K.A., Snyman L.W., Polleux J.-L., Viana C., Tegegne Z., Schmieder D. Towards 10-40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology. Proc. SPIE 8991, Optical Interconnects XIV. 2014;8991:899108(1-16). DOI: 10.1117/12.2038079.

17. Xu K. Electro-optical modulation processes in Si-PMOSFET LEDs operating in the avalanche light emission mode. IEEE Transactions on Electron Devices. 2014;61(6):2085-2092. DOI: 10.1109/TED.2014.2318277.

18. Xu K. Silicon MOS optoelectronic micro-nano structure based on reverse-biased PN junction. Physica Status Solidi (a). 2019;216(7):1800868(1-9). DOI: 10.1002/pssa.201800868.

19. Dutta S., Steeneken P.G., Agarwal V., Schmitz J., Annema A.-J., Hueting R.J. The avalanche-mode superjunction LED. IEEE Transactions on Electron Devices. 2017;64(4):1612-1618. DOI: 10.1109/TED.2017.2669645.

20. Okhai T.A., Snyman L.W., Polleux J.-L. Wavelength dispersion characteristics of integrated silicon avalanche LEDs: potential applications in futuristic on-chip micro-and nano-biosensors. Proc. SPIE 10036, Fourth Conference on Sensors, MEMS, and Electro-Optic Systems. 2017;10036:1003604(1-22). DOI: 10.1117/12.2264200.

21. Agarwal V., Dutta S., Annema A., Hueting R., Schmitz J., Lee M., Charbon E., Nauta B. Optocoupling in CMOS. IEEE International Electron Devices Meeting (IEDM).2018(IEMD18):739-742. DOI: 10.1109/IEDM.2018.8614523.

22. Xu K., Chen Y., Okhai T.A., Snyman L.W. Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips. Optical Materials Express. 2019;9(10):3985-3997. DOI: 10.1364/OME.9.003985.

23. Krakers M., Kneevic T., Nanver L. Reverse breakdown and light-emission patterns studied in Si PureB SPADs. 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 2019;MIPRO2019:30-35. DOI: 10.23919/MIPRO.2019.8757007.

24. Lazarouk S., Leshok A., Kozlova T., Dolbik A., Le Dinh V., Ilkov V., Labunov V. 3D Silicon Photonic Structures Based on Avalanche LED with Interconnections through Optical Interposer. International Journal of Nanoscience. 2019;18(3&4):1940091(1-5). DOI: 10.1142/S0219581X1940091X.

25. Lazarouk S., Sasinovich D., Katsuba P., Labunov V., Leshok A., Borisenko V. Electroluminescence from nanostructured silicon embedded in anodic alumina. Semiconductors. 2007;41(9):1109-1112. DOI: 10.1134/S1063782607090163.


Review

For citations:


Vi L.D., Leshok A.A., Dolbik A.V., Perko S.L., Lazarouk S.K. Avalanche leds based on nanostructured silicon for optical interconnections. Doklady BGUIR. 2020;18(3):63-71. (In Russ.) https://doi.org/10.35596/1729-7648-2020-18-3-63-71

Views: 2681


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)