HUMAN BODY ANTHROPOMORPHIC PHANTOM UTILISATION FOR THE COMPLEX TESTING OF RADIATION THERAPY TECHNOLOGICAL PROCESS
https://doi.org/10.35596/1729-7648-2019-126-8-133-140
Abstract
The rapid development of technologies in the field of radiation therapy allows us nowadays to implement precision and most clinically effective radiotherapy techniques for oncological patient’s treatment to minimize the irradiation of normal tissues and improve local tumor control. An important condition for the implementation of the justification principle is strict compliance with the requirements for the accuracy of the dose delivered. High standards of radiation treatments performed are guaranteed by the development and strict compliance with the quality assurance (QA) program in the radiological department. However, due to QA programmes specificity, standardized and worldwide used tests included in the quality management system are trivial mechanical and dosimetric tests that can’t define the presence and magnitude of the integral error in the dose delivered to the patient, which arises as a result of the execution of sophisticated radiation therapy procedures, as well as to take into account the complexity of the implementation of modern methods of treatment. The aim of the work is to develop a method of complex dosimetric testing of the radiation therapy process (end-to-end audit), based on the utilization of the anthropomorphic phantom of the original design. The result of this work is the creation of the modified anthropomorphic phantom for precision dosimetric measurements, designed for testing the following technological procedures of the radiation therapy process: a computer tomography acquisition; a computerized treatment planning system, including a contouring module and dose distribution calculation algorithm; imaging systems integrated with radiation treatment units; dosimetric and technical characteristics of the radiation treatment units. Regular dosimetric testing of the radiation therapy technological process (end-to-end audit) with utilization of the technique proposed by the authors, based on the developed anthropomorphic phantom usage, will allow to assess the accuracy of dose distribution delivered to patients with all major malignant tumors localizations.
About the Authors
Y. I. HoldmanBelarus
Holdman Yauheni Igorevich, Engineer in the Radiotherapy Engineering and Medical Physics Department
223040, Minsk district, Lesnoy agrotown, 66
E. V. Titovich
Belarus
PhD, Leading Engineer in the Radiotherapy Engineering and Medical Physics Department
223040, Minsk district, Lesnoy agrotown, 66
References
1. Hasan Murshed. Fundamentals of Radiation Oncology. Physical, Biological, and Clinical Aspects. 3rd Edition. London: Academic Press; 2019.
2. Kron T., Haworth A., Williams I. Dosimetry for audit and clinical trials: challenges and requirements. Journal of Physics: Conference Series. 2013;444:1-7. DOI: 1742-6596.
3. Editor E.B. Podgorsak. Radiation oncology physics. Vienna: International Atomic Energy Agency; 2005.
4. Hellebust T.P., Heikilla I.E., Frykholm G., Levernes S., Johannesen D.C., Bjerke H., Olerud H. Quality assurance in radiotherapy on a national level; experience from Norway: the KVIST initiative. Radiotherapy Practice Journal. 2013;1:35-44. DOI: 10.1017/S1460396912000544.
5. Court L., Wang H., Aten D., Brown D., MacGregor H., Toit M., Chi M., Gao S., Yock A., Aristophanus M., Balter P. Illustrated instructions for mechanical quality assurance of a medical linear accelerator. Journal of Applied Clinical Medical Physics. 2018;3:355-359. DOI: 10.1002/acm2.12265.
6. Chung E., Kwon D., Park T., Kang H., Chung Y. Clinical implementation of Dosimetry Check for ThomoTherapy delivery quality assurance. Journal of Applied Clinical Medical Physics. 2018;6:193-199. DOI: 10.1002/acm2.12480.
7. Zakjevskii V.V., Knill C.S., Rakowski J.T., Snyder M.G. Development and evaluation of an end-to-end test for head and neck IMRT with a novel multiple-dosimetric modality phantom. Journal of applied clinical medical physics. 2016;02:497-510. DOI: 10.1120/jacmp.v17i2.5705.
8. Molineu A., Hernandez N., Nguyen T., Ibbott G., Followill D. Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom. Medical Physics. 2013;02:22-29. DOI: 10.1118/1.4773309.
9. Izewska J., Andreo P., Vatnitsky S., Shortt K.R. The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries. Radiotherapy and Oncology: journal of the ESTRO. 2003;01:91-97. DOI: S0167-8140(03)00245-7.
10. Gay H.A., Barthold H.J., O'Meara E., Bosch W.R., El Naqa I., Al-Lozi R., Rosenthal S.A., Lawton C., Lee W.R., Sandler H., Zietman A., Myerson R., Dawson L.A., Willett C., Kachnic L.A., Jhingran A., Portelance L., Ryu J., Small W.Jr., Gaffney D., Viswanathan A.N., Michalski J.M. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. International journal of radiation oncology, biology, physics. 2012;3:353-362. DOI: 10.1016/j.ijrobp.2012.01.023.
11. Zhao Y., Qi G., Yin G., Wang X., Wang P., Li J., Xiao M., Li J., Kang S., Liao X. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation. Radiation Oncology. 2014;9:287-296. DOI: 10.1186/s13014-014-0287-2.
12. Wen-Zhou Chen, Ying Xiao, Jun Li. Impact of dose calculation algorithm on radiation therapy. World journal of Radiology. 2014;11:874-880. DOI: 10.4329/wjr.v6.i11.874.
13. Chopra L.K., Leo P., Kabat C., Rai D.V., Avadhani J.S., Kehwar T.S., Sethi A. Evaluation of dose calculation accuracy of treatment planning systems in the presence of tissue heterogeneities. Therapeutic Radiology and Oncology. 2018;2:420-427. DOI: 10.21037/tro.2018.07.01.
Review
For citations:
Holdman Y.I., Titovich E.V. HUMAN BODY ANTHROPOMORPHIC PHANTOM UTILISATION FOR THE COMPLEX TESTING OF RADIATION THERAPY TECHNOLOGICAL PROCESS. Doklady BGUIR. 2019;(7-8):133-140. (In Russ.) https://doi.org/10.35596/1729-7648-2019-126-8-133-140