MODEL OF TRANSMISSION OF MULTILAYER COATINGS BASED ON THE Cu-ZrO2 SYSTEM IN THE OPTICAL WAVELENGTH RANGE
https://doi.org/10.35596/1729-7648-2019-124-6-87-94
Abstract
The transmission model for optical diapason was developed for multilayer coatings consisting of alternating layers of copper and zirconium dioxide deposited on K8 glass substrates. The model is based on the laws of light interference. It was shown that the transmission in the optical range of a 60 nm thick Cu layer with a surface resistance ρ = 1 Ohm/sq is 4–5 %, and the transmission of the ZrO2/Cu/ZrO2/Cu/К8 coating obtained by dividing a 60 nm thick copper layer into two sublayers at 30 nm with the application of antireflection layers of ZrO2 on them, at ρ = 1.2 Ohm/sq it reaches 25 %. The thicknesses and the number of layers of the Cu-ZrO2 system were calculated, which ensure a transmission in the wavelength range of 400–700 nm of at least 45 %. The permissible thickness of Cu layers (≥ 20 nm) was determined, below which, due to their insular structure and partial oxidation with the formation of Cu2O, the electrical conductivity of the multilayer coating sharply decreases (ρ ≥ 100 Ohm/sq).
About the Authors
A. T. VolochkoBelarus
D.Sci, professor, head of the laboratory
220141, Minsk, Kuprevichа str., 10
V. A. Zelenin
Belarus
D.Sci, associate professor, senior scientific researcher
220141, Minsk, Kuprevichа str., 10
E. O. Narushko
Belarus
Narushko Elena Olegovna, junior researcher
220141, Minsk, Kuprevichа str., 10
A. V. Skilandz
Belarus
Researcher
G. V. Markov
Belarus
PhD, leader researcher
220141, Minsk, Kuprevichа str., 10
References
1. Osnovy teorii jelektromagnitnogo jekranirovanija / D.N. Shapiro [i dr.]. L.: Jenergija, 1975. 112 s. (in Russ.)
2. Titomir A. K., Sushkov V. Ja., Duhopel'nikov D. V. Sposob nanesenija provodjashhego prozrachnogo pokrytija / Patent na izobretenie RU 2112076. (in Russ.)
3. Antiotrazhajushhee pokrytie s metallicheskimi nanochasticami / S.G. Moiseev [i dr.] // Izv. Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2013. T. 15, № 4–3. S. 749–754. (in Russ.)
4. Krylova T. N. Interferencionnye pokrytija. L.: Mashinostroenie, 1973. 224 s. (in Russ.)
5. Volochko A.T., Zelenin V.A., Narushko E.O. Mnogoslojnye pokrytija na jelementah komp'jutera kak sredstvo tehnicheskoj zashhity informacii // Mater. II MNPK «Problemy informacionnoj bezopasnosti» Simferopol', 25–27 fevralja 2016. S. 16–19. (in Russ.)
6. Opticheski prozrachnye jelektromagnitnye jekrany / A.T. Volochko [i dr.] // Doklady BGUIR. 2015. № 3. S. 53–57. (in Russ.)
7. Sivuhin D.V. Obshhij kurs fiziki. T. IV. Optika. M.,1980. 433 s. (in Russ.)
8. Dimitrov V. I. Prostaja kinetika. Novosibirsk: Nauka, 1982. 382 s. (in Russ.)
9. Ritter Je. Plenochnye dijelektricheskie materialy dlja opticheskih primenenij v kn.: Fizika tonkih plenok. T. 8. M.: Mir, 1978. S. 7–60. (in Russ.)
10. Jakovlev P.P., Cheshkov B.B. Proektirovanie interferencionnyh pokrytij. M.: Mashinostroenie, 1987. 192 s. (in Russ.)
11. Starcev V.V. Razrabotka programmnogo kompleksa dlja rascheta opticheskih konstant pokrytij // Molodoj uchenyj. 2016. № 10. S. 315–321. (in Russ.)
Review
For citations:
Volochko A.T., Zelenin V.A., Narushko E.O., Skilandz A.V., Markov G.V. MODEL OF TRANSMISSION OF MULTILAYER COATINGS BASED ON THE Cu-ZrO2 SYSTEM IN THE OPTICAL WAVELENGTH RANGE. Doklady BGUIR. 2019;(6):87-94. (In Russ.) https://doi.org/10.35596/1729-7648-2019-124-6-87-94