Preview

Doklady BGUIR

Advanced search

FINDING OF OPTIMAL SUBSET STRUCTURE IN THE KNAPSACK PROBLEM

https://doi.org/10.35596/1729-7648-2019-124-6-72-79

Abstract

An algorithm for solving the knapsack problem based on the proposed multi-criteria model is considered. The implementation of this algorithm allows to define the structure of the optimal subset as a union of certain elements of a Pareto layers group into which a initial data set is divided. The first such layer is the Pareto set. The optimal subset allows to find a specific subset of the initial data. Its elements as a result of belonging to the Pareto layers with large numbers cannot enter the optimal subset. The most expensive in terms of the number of operations required are knapsack problems, in which the number of elements in the set of initial data is quite large. The article shows that with a relatively small value of the knapsack volume, the number of elements required to find the optimal subset is significantly less than their total number in the original set. It can lead to a significant decrease in the total time to solve the combinatorial problem.  

About the Authors

S. V. Chebakov
United Institute of Informatics Problems of NAS of Belarus
Belarus

PhD, senior researcher



L. V. Serebryanaya
Belarusian State University of Informatics and Radioelectronics
Belarus

Serebryanaya Liya Valentinovna, PhD, associate professor of the information technology software department

220013, Minsk, P. Brovka str., 6



References

1. Al'svede R., Vegener I. Zadachi poiska. M.: Mir, 1982. 367 s. (in Russ.)

2. Posypkin M.A. Kombinirovannyj parallel'nyj algoritm reshenija zadachi o rance // Trudy IV Mezhdunar. konf. «Parallel'nye vychislenija i zadachi upravlenija». Moskva, 27–29 oktjabrja 2008 g. S. 177–189. (in Russ.)

3. Martello S., Toth P. Knapsack Problems: Algorithms and Computer Implementations. N.Y.: John Wiley&Sons, 1990. 308 p.

4. Chebakov S.V. Dvuhkriterial'naja model' postroenija optimal'nogo podmnozhestva al'ternativ s maksimal'noj summarnoj verojatnost'ju dostizhenija celi // Vesti NAN Belarusi. Ser. fiz.-mat. nauk. 2005. № 2. S. 112–118. (in Russ.)

5. Kung H.F., Preparata F.P. On finding the maxima of a set of vectors // Journal of the Association for Computing Machinery. 1975. Vol. 22. P. 469–476.


Review

For citations:


Chebakov S.V., Serebryanaya L.V. FINDING OF OPTIMAL SUBSET STRUCTURE IN THE KNAPSACK PROBLEM. Doklady BGUIR. 2019;(6):72-79. (In Russ.) https://doi.org/10.35596/1729-7648-2019-124-6-72-79

Views: 551


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)