МЕТОДИКА СУБПИКСЕЛЬНОЙ ОБРАБОТКИ ПОЛОЖЕНИЯ КРАЯ ПОВЫШЕННОГО РАЗРЕШЕНИЯ ПРИ РЕГИСТРАЦИИ ЭЛЕМЕНТОВ ФОТОШАБЛОНА НА ПРОСВЕТ
Аннотация
Предложена методика субпиксельной обработки положения края повышенного разрешения при регистрации объекта на просвет. Осуществлено имитационное моделирование результатов субпиксельной регистрации на примере идеальной системы регистрации. Установлены ограничения работы системы в условиях высокой и низкой освещенности, сформулированы условия стабильной работы системы. Исследовано поведение системы при регистрации полупрозрачных объектов, осуществлена оценка значения среднеквадратичного отклонения σsub для результатов моделирования работы идеальной системы регистрации на 8-битовой ПЗС-линейке. Проведены оценочные расчеты среднеквадратичного отклонения σsub для 12-битовой ПЗС-линейки.
Об авторах
А. В. ЛапкоБеларусь
Лапко Александр Владимирович , аспирант
220013, г. Минск, ул. П. Бровки, 6
А. И. Дедков
Беларусь
Начальник сектора программного обеспечения оптико-механического и контрольно-измерительного оборудования
Список литературы
1. Lin Z., Shum H.Y. Fundamental limits of reconstruction-based superresolution algorithms under local translation // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004. № 26 (1). P. 83–97.
2. Farsiu S., Elad M., Milanfar P. Multiframe demosaicing and super-resolution of color images // IEEE Transactions on Image Processing. 2006. № 15 (1). P. 141–159.
3. Evangelidis G.D., Psarakis E.Z. Parametric image alignment using enhanced correlation coefficient maximization // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008. № 30 (10). P. 1858–1865.
4. Baker S., Kanade T. Limits on super-resolution and how to break them // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. № 24 (9). P. 1167–1183.
5. Ben-Ezra M., Zomet A., Nayar S.K. Video super-resolution using controlled subpixel detector shifts // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005. № 27(6). P. 977–987.
6. Ben-Ezra M., Lin Z., Wilburn B., Zhang W. Penrose pixels for super-resolution // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001. № 33(7). P. 1370–1383.
7. Sub-Pixel Layout for Super-Resolution with Images in the Octic Group / Boxin Shi [et al.] // ECCV. 2014. № 1. P. 250–264.
8. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network / Wenzhe Shi [et al.] // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 105–114.
9. Haralick R.M., Shapiro L.G. Computer and Robot Vision. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1992.
Рецензия
Для цитирования:
Лапко А.В., Дедков А.И. МЕТОДИКА СУБПИКСЕЛЬНОЙ ОБРАБОТКИ ПОЛОЖЕНИЯ КРАЯ ПОВЫШЕННОГО РАЗРЕШЕНИЯ ПРИ РЕГИСТРАЦИИ ЭЛЕМЕНТОВ ФОТОШАБЛОНА НА ПРОСВЕТ. Доклады БГУИР. 2019;(6):38-43. https://doi.org/10.35596/1729-7648-2019-124-6-38-43
For citation:
Lapko A.V., Dedkov A.I. METHOD OF SUBPIXEL PROCESSING OF HIGH RESOLUTION EDGE DURING CLEARANCE PHOTOSHOP REGISTRATION. Doklady BGUIR. 2019;(6):38-43. (In Russ.) https://doi.org/10.35596/1729-7648-2019-124-6-38-43