Preview

Doklady BGUIR

Advanced search

On constraint qualifications in mathematical programming

Abstract

The article is devoted to the condition of R-regularity (Error Bound Property) in problems of mathematical programming. This condition plays an important role in analyzing the convergence of numerical optimization algorithms and it is a fairly general condition of regularity (constraint qualification) in problems of mathematical programming. The article obtains new sufficient conditions for the presence of R-regularity in problems of mathematical programming.

About the Authors

L. I. Minchenko
Belarusian state university of informatics and radioelectronics
Belarus
D.Sci,  professor,  professor of informatics  department


S. I. Sirotko
Belarusian state university of informatics and radioelectronics
Belarus

Sirotko Sergey Ivanovich - PhD, associate professor, associate professor of informatics department 

220013 Republic of Belarus, Minsk, P. Brovka st., 6

+375-17-293-86-66



References

1. Hoffman A.J. On approximate solutions of systems of linear inequalities. // J. Res. Natl. Bureau Stand. 1952. Vol. 49. P. 263–265.

2. Luderer B., Minchenko L., Satsura T. Multivalued analysis and nonlinear programming problems with perturbations. Kluwer Acad. Publ., Dordreht, 2002. 220 p.

3. Error Bounds: Necessary and Sufficient Conditions / M.J. Fabian [et al.] // Set-Valued and Variational Analysis. 2010. Vol. 18 (2). P. 121–149.

4. Minchenko L.I., Stakhovski S.M. On relaxed constant rank regularity condition in mathematical programming. // Optimization. 2011. Vol. 60. P. 429–440.

5. Minchenko L., Tarakanov A. On error bounds for quasinormal programs // J. Optim. Theory and Appl., 2011. Vol. 148. P. 571–579.

6. Minchenko L.I., Stahovskij S.M. K obobshheniju uslovij reguljarnosti Mangasarjana-Fromovica // Dokl. BGUIR. 2010. № 8 (62). S. 104–109. (in Russ.)

7. Kruger A.Y., Minchenko L.I., Outrata J.V. On relaxing the Mangasarain–Fromovitz constaint qualication // Positivity. 2013. Vol. 17. P. 1–17.

8. Mangasarian O. L., Fromovitz S. The Fritz-John necessary optimality conditions in presence of equality and inequality constraints // J. Mathem. Anal. and Appl. 1967. Vol. 17. P. 37–47.

9. Janin R. Direction derivative of the marginal function in nonlinear programming // Mathematical Programming Study. 1984. Vol. 21. P. 127–138.

10. Bertsekas D.P., Ozdaglar A.E. The relation between pseudonormality and quasiregularity in constrained optimization // Optimization Methods and Software. 2004. Vol. 19. P. 493–506.

11. Gorohovik V.V. Konechnomernye zadachi optimizacii. Minsk: Izd.BGU, 2007. 239 s. (in Russ.)

12. Rockafellar R.T., Wets R.J.-B. Variational analysis. Springer, Berlin, 1998. 749 p.

13. Bounkhel M. Regularity concepts in nonsmooth analysis. Theory and applications. Springer, 2012. 264 p.


Review

For citations:


Minchenko L.I., Sirotko S.I. On constraint qualifications in mathematical programming. Doklady BGUIR. 2018;(8):76-80. (In Russ.)

Views: 391


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)