Preview

Doklady BGUIR

Advanced search

Simulation of the processes of the electrons transfer in the semiconductor structure based on graphene

Abstract

The results of modeling of electron transfer processes in a three-dimensional semiconductor structure containing a single layer of graphene using the Monte-Carlo method are presented. The use of graphene, which has a high mobility of charge carriers, high thermal conductivity and a number of other positive properties, is promising for the creation of new semiconductor devices with good output characteristics . As a result of modeling, the dependences of the velocity, average energy, mobility, diffusion coefficient on the structure length and electric field intensity in a semiconductor structure containing a graphene layer and a region of a 4H-SiC silicon carbide material are obtained.

About the Authors

V. V. Murav'ev
Belarusian state university of informatics and radioelectronics
Belarus
D.Sci,  professor


V. N. Mishchenka
Belarusian state university of informatics and radioelectronics
Belarus

Mishchenka Valery Nickolaevich - PhD., associate professor 

220013, Republic of Belarus, Minsk, P. Brovka st., 6

tel. +375-17-293-80-70



References

1. Top-Gated Epitaxial FETs on SiC-Face SiC Wafers with a Peak Transconductance of 600 mS/mm / J.S. Moon [et al.] // IEEE Electron Device Letters. 2010. Vol. 31. P. 260–262.

2. Lateral Graphene Heterostructure Field-Effect Transistor / J.S. Moon [et al.] // IEEE Electron Device Letters. 2013. Vol. 34, iss. 9. P. 1190–1192.

3. Tunnel'nye polevye tranzistory na osnove grafena / D.A. Svincov [i dr.] // Fizika i tehnika poluprovodnikov. 2013. T. 47, vyp. 2. S. 244–250. (in Russ.)

4. Mishhenko V.N. Modelirovanie srednej drejfovoj skorosti jelektronov v odnomernoj strukture iz arsenide gallija // Dokl. BGUIR. 2015. № 8 (94). C. 99–102. (in Russ.)

5. First-principles analysis of electron-phonon interaction in grapheme / K.M. Borysenko [et al.] // Physical Review. 2010. Vol. B 81. P. 121412(R).

6. A temperature dependent measurement of the carrier velocity vs. electric field characteristic for as-grown and H-intercalated epitaxial graphene on SiC / M. Winters [et al.] // Appl. Phys. 2013. Vol. 113. P. 193708.

7. Chauhan Jyotsna, Guo Jing. High-field transport and velocity saturation in grapheme // Appl. Phys. Letters. 2009. Vol. 95. P. 023120.

8. Vasileska D., Goodnick S.M. Computational Electronics. Morgan and Claypool, 2006. 2016 p.

9. Fawcett W., Boardman D.A., Swain S. Monte Carlo determination of electron transport properties in gallium arsenide // J. of Physical Chemistry Solids. 1970. Vol. 31. P. 1963–1990.

10. Persson C., Lindefelt U. Dependence of energy gaps and effective masses on atomic positions in hexagonal SiC. J. Appl. Phys. 1997. Vol. 86, № 11. P. 5036–5039.

11. Hockney R., Eastwood J. Numerical simulation using particles. M., 1987. 640 p.

12. Shur M. Sovremennye pribory na osnove arsenida gallija. M.: Mir, 1991. 632 s. (in Russ.)

13. Mishhenko V.N. Trehmernoe modelirovanie vyhodnyh harakteristik GaAs tranzistorov s submikronnoj dlinoj zatvora // Dokl. BGUIR. 2016. № 6 (100). C. 113–116. (in Russ.)

14. High-field transport in two-dimensional grapheme / Fang Tian [et al.] // Physical Review. 2011. Vol. B 84. P. 125450.

15. Murav'ev V.V., Mishhenko V.N. Modelirovanie processov perenosa jelektronov v poluprovodnikovoj strukture iz karbida kremnija // Dokl. BGUIR. 2017. № 2 (104). C. 53–57. (in Russ.)

16. Murav'ev V.V., Mishhenko V.N. Opredelenie intensivnostej rasseivanija jelektronov v odinochnom sloe grafena // Dokl. BGUIR. 2017. № 6 (108). C. 42–47. (in Russ.)


Review

For citations:


Murav'ev V.V., Mishchenka V.N. Simulation of the processes of the electrons transfer in the semiconductor structure based on graphene. Doklady BGUIR. 2018;(8):55-62. (In Russ.)

Views: 491


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)