1. Airborne Visible/Infrared Imaging Spectrometer. Ofitsial'nyi portal AVIRIS [Electronic resource]. URL: http://aviris.jpl.nasa.gov (date of access: 20.04.2018).
2. Klimesh M. Low-complexity lossless compression of hyperspectral imagery via adaptive filtering. Technical Report 42-163, Jet Propulsion Laboratory, California Institute of Technology, 2005.
3. Pizzolante R. Lossless compression of hyperspectral imagery // Proc. of the First International Conference on Data Compression, Communications and Processing. 2011. P. 157-162.
4. Wang H., Babacan S.D., Sayood K. Lossless hyperspectral-image compression using context-based conditional average // Geoscience and Remote Sensing, IEEE Transactions on. 2007. Vol. 45, iss. 12. P. 4187-4193.
5. Magli E., Olmo G., Quacchio E. Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC // Geoscience and Remote Sensing Letters, IEEE. 2004. Vol. 1, iss. 1. P. 21-25.
6. Huang B., Sriraja Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection // Proc. Image and Signal Processing for Remote Sensing XII. 2006. Vol. 63-65. P. 131-139.
7. Mielikainen J., Toivanen P. Lossless compression of hyperspectral images using a quantized index to lookup tables // Geoscience and Remote Sensing Letters, IEEE. 2008. Vol. 5, iss. 3. P. 474-478.
8. Chang C.-I. Hyperspectral data processing: algorithm design and analysis. New York: John Wiley & Sons, 2013. 1164 p.
9. Sayood Kh. Introduction to Data Compression. Morgan Kaufmann, 2017. 765 p.