Morphological and spectral analysis of histological tissue with the use of deep convolutional networks
Abstract
The results of a study of the application of deep neural convolutional networks to hyperspectral images are presented.
About the Authors
S. V. TrukhanBelarus
Trukhan Stanislau Vyacheslavovich - PG student of UIIP NAS of Belarus
220012, Republic of Belarus, Minsk, Surganova st., 6
tel.+375-29-614-37-27
A. M. Nedzved
Belarus
D.Sci, professor, chief researcher of UIIP NAS of Belarus
A. Kohler
Belarus
PhD, professor in physics at RealTek
References
1. Marker-free automated histopathological annotation of lung tumour subtypes by FTIR imaging / F. Großerueschkamp [et al.] // Analyst. 2015. Vol. 140, № 7. P. 2114–2120.
2. Robust classification of low-grade cervical cytology following analysis with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass / J.G. Kelly [et al.] // Anal. Bioanal. Chem. 2010. Vol. 398, № 5. P. 2191–2201.
3. Distinction of cervical cancer biopsies by use of infrared microspectroscopy and probabilistic neural networks / A. Podshyvalov [et al.] // Appl. Opt. 2005. Vol. 44, № 18. P. 3725.
4. Udelhoven T., Novozhilov M., Schmitt J. The NeuroDeveloper®: a tool for modular neural classification of spectroscopic data // Chemom. Intell. Lab. Syst. 2003. Vol. 66, № 2. P. 219–226.
5. Evaluation and discrimination of simvastatin-induced structural alterations in proteins of different rat tissues by FTIR spectroscopy and neural network analysis / S. Garip [et al.] // Analyst. 2010. Vol. 135. P. 3233–3241.
6. Combining random forest and 2D correlation analysis to identify serum spectral signatures for neuro-oncology / B.R. Smith [et al.] // Analyst. 2016. Vol. 141, № 12. P. 3668–3678.
7. An investigation of the RWPE prostate derived family of cell lines using FTIR spectroscopy / M.J. Baker [et al.] // Analyst. 2010. Vol. 135, № 5. P. 887–894.
8. Vibrational biospectroscopy coupled with multivariate analysis extracts potentially diagnostic features in blood plasma/serum of ovarian cancer patients / G.L. Owens [et al.] // J. Biophotonics. 2014. Vol. 7, № 3–4. P. 200–209.
9. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer / K. Gajjar [et al.] // Analyst. 2013. Vol. 138, № 14. P. 3917.
10. Integrating spatial, morphological, and textural information for improved cell type differentiation using Raman microscopy / S.D. Krauß [et al.] // J. Chemom. 2018. Vol. 32, № 1.
11. Krizhevsky A., Sutskever I. , Hinton G.E. ImageNet Classification with Deep Convolutional Neural Networks // NIPS. 2012. P. 1–9.
12. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the «dispersion artefact» / P. Bassan [et al.] // Analyst. 2009. Vol. 134, № 8. P. 1586–1593.
13. Breiman L. Random Forests // Mach. Learn. 1999. Vol. 45, № 5. P. 1–35.
14. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation // Miccai. 2015 P. 234–241.
Review
For citations:
Trukhan S.V., Nedzved A.M., Kohler A. Morphological and spectral analysis of histological tissue with the use of deep convolutional networks. Doklady BGUIR. 2019;(4):25-31. (In Russ.)