Preview

Doklady BGUIR

Advanced search

Atomic structure, fundamental electronic, optical and magnetic properties of low-dimensional structures of semiconductors

Abstract

The results of theoretical modeling from the first principles of atomic structure and properties of promising low-dimensional structures from semiconductors, performed for the past five years at the Center of Nanoelectronics and Novel Materials of Belarusian state university of informatics and radioelectronics, are summarized. The discovered principal new properties of two-dimensional structures from dichalcogenides of refractory metals and semiconductor silicides, one-dimensional structures of silicon, А3В5 semiconductors and semiconductor metal oxides, and zero-dimensional structures of carbon - nanodiamonds - are presented.

About the Authors

V. E. Borisenko
Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь
Belarus


A. V. Krivosheeva
Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь
Belarus


D. B. Migas
Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь
Belarus


V. A. Pushkarchuk
Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь
Belarus


A. B. Filonov
Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь
Belarus


V. L. Shaposhnikov
Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь
Belarus


References

1. Наноэлектроника: Теория и практика / В.Е. Борисенко [и др.]. М.: Бином, 2013. 366 с.

2. Борисенко В.Е., Данилюк А.Л., Мигас Д.Б. Спинтроника. М.: Лаборатория знаний, 2017. 229 с.

3. Borisenko V.E., Ossicini S. What is What in the Nanoworld. Third, Revised and Enlarged Edition. Weinheim: Wiley-VCH, 2012. 601 p.

4. Кривошеева А.В., Шапошников В.Л., Борисенко В.Е. Методика моделирования электронных свойств объемных полупроводниковых соединений // Докл. БГУИР. 2017. № 4 (106). C. 70-76.

5. Electronic and optical properties of two-dimensional MoS2, WS2, and Mo0.5W0.5S2 from first-principles. In: Physics, Chemistry and Application of Nanostructures / A.V. Krivosheeva [et al.]. Singapore: World Scientific, 2013. P. 32-35.

6. Electronic and dynamical properties of bulk and layered MoS2 / A.V. Krivosheeva [et al.] // Докл. БГУИР. 2014. № 5 (83). С.34-37.

7. Band gap modifications of two-dimensional defected MoS2 / A.V. Krivosheeva [et al.] // Int. J. Nanotechnol. 2015. Vol. 12(8/9). P. 654-662.

8. Theoretical study of defect impact on two-dimensional MoS2 / A.V. Krivosheeva [et al.] // J. of Semiconductors. 2015. Vol. 36 (12). P. 122002.

9. Кривошеева А.В., Шапошников В.Л., Борисенко В.Е. Модификация ширины запрещенной зоны MoS2 при замещении атомов серы атомами теллура // Докл. БГУИР. 2016. № 4 (98). С. 98-101.

10. Кривошеева А.В., Шапошников В.Л., Борисенко В.Е. Зонная структура и оптические свойства дихалькогенидов молибдена и вольфрама // Вестн. Фонда фундаментальных исследований. 2016. Т. 3. С. 41-48.

11. Расчет фононных спектров двумерных кристаллов дисульфида и дителлурида молибдена / А.Ю. Алексеев [и др.] // Журнал прикладной спектроскопии. 2016. Т. 83 (6). С. 989-992.

12. Моделирование спектра фононов в трехкомпонентных двумерных кристаллах дихалькогенидов тугоплавких металлов / А.Ю. Алексеев [и др.] // Журнал прикладной спектроскопии. 2017. Т. 84 (4). С. 554-560.

13. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework GVJ-2e method / J. Gusakova [et al.] // Phys. Status Solidi A. 2017. Vol. 214 (12). P. 1700218 (1-7).

14. Lattice thermal conductivity of transition metal dichalcogenides / A. Alexeev [et al.] // Materials Physics and Mechanics. 2018. Vol. 39 (1). P. 1-7.

15. Shaposhnikov V.L., Krivosheeva A.V., Borisenko V.E. Impact of Defects on Electronic Properties of Heterostructures Constructed From Monolayers of Transition Metal Dichalcogenides // Phys. Stat. Sol. B. 2019. DOI: 10.1002/pssb.201800355.

16. Кривошеева А.В., Шапошников В.Л., Борисенко В.Е. Влияние вакансионных дефектов и примесей на электронную структуру двумерных кристаллов MoS2, MoSе2, WS2 и WSe2 // Докл. НАН Беларуси. 2016. Т. 60, № 6. С. 48-53.

17. Кривошеева А.В., Шапошников В.Л. Магнитное упорядочение в гетероструктурах на основе двумерных кристаллов дихалькогенидов тугоплавких металлов, легированных марганцем // Вестн. фонда фундаментальных исследований. 2017. Т. 80, № 2 (17). С. 106-112.

18. Кривошеева А.В., Шапошников В.Л., Алексеев А.Ю. Влияние дефектов на электронные свойства структур из слоистых дихалькогенидов тугоплавких металлов // Докл. БГУИР. 2016. № 8 (102). С. 76-81.

19. Кривошеева А.В. Перспективные полупроводниковые соединения и наноструктуры для оптоэлектроники, фотовольтаики и спинтроники // Докл. БГУИР. 2016. № 3 (97). С. 12-17.

20. Semiconducting Silicides / Ed. by V.E. Borisenko. Berlin: Springer, 2000. 348 p.

21. Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films / D.B. Migas [et al.] // Surface Science. 2018. Vol. 670, № 1. P. 51-57.

22. Electronic properties of thin BaSi2 films with different orientations / D.B. Migas [et al.] // Jpn. J. Appl. Phys. 2017. Vol. 56, № 3. P. 05DA03.

23. Transport properties of n- and p-type polycrystalline BaSi2 / V.E. Borisenko [et al.] // Thin Solid Films. 2018. Vol. 661, № 4. P. 7-15.

24. Conductive CaSi2 transparent in the near infra-red range / V.E. Borisenko [et al.] // J. of Alloys and Compounds. 2019. Vol. 770, № 2. P. 710-720.

25. Role of edge facets on stability and electronic properties of III-V nanowires / / D.B. Migas [et al.] // Nano Convergence. 2015. Vol. 2. P. 14.

26. Revising morphology of №111>-oriented silicon and germanium nanowires / D.B. Migas [et al.] // Nano Convergence. 2015. Vol. 2. P. 16.

27. Orientation effects in morphology and electronic properties of anatase TiO2 one-dimensional nanostructures. I. Nanowires / D.B. Migas [et al.] // Phys. Chem. Chem. Phys. 2014. Vol. 16, № 3. P. 9479-9489.

28. Orientation effects in morphology and electronic properties of anatase TiO2 one-dimensional nanostructures. II. Nanotubes / D.B. Migas [et al.] // Phys. Chem. Chem. Phys. 2014. Vol. 16, № 3. P. 9490-9498.

29. Electronic properties of semiconducting Ca2Si silicide: From bulk to nanostructures by means of first principles calculations / D.B. Migas [et al.] // Jpn. J. Appl. Phys. 2015. Vol. 54, № 2. P. 07JA03.

30. Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]-H172 diamond cluster hosting nitrogen-vacancy center / A.P. Nizovtsev [et al.] // New Journal of Physics. 2014. Vol. 16. P. 083014(1-21).

31. Сверхтонкое взаимодействие NV центра в алмазе с атомом 13С, расположенным на оси центра: моделирование методом DFT / А.Л. Пушкарчук [и др.] // Сб. науч. ст. VIII Междунар. конф. «Фуллерены и наноструктуры в конденсированных средах». Минск, 2014. C. 164-169.

32. Non-flipping 13C spins near an NV center in diamond: Hyperfine and Spatial Characteristics by DFT Simulation of the C510[NV]H252 Cluster / A.P. Nizovtsev [et al.] // New Journal of Physics. 2018. Vol. 20. P. 023022 (1-15).

33. DFT simulation of hyperfine interactions in the NV hosting carbon cluster C510[NV]- H252: predictions for the «on-NV-axis» 13C sites / A.P. Nizovtsev [et al.] // Physics, Chemistry and Application of Nanostructures. Singapore: World Scientific, 2015. P. 24-27.

34. Non-flipping 13C nuclear spins in NV diamond: Hyperfine and spatial characteristics from DFT simulation of the NV hosting H-terminated cluster C510[NV]H252 / A.P. Nizovtsev [et al.] // Book of Abstracts of XIV International Conference on Quantum Optics and Quantum Information, Minsk, Belarus. 2015. P. 47.

35. A semiempirical description of functionalized nanodiamonds with NV color centers / A.V. Luzanov [et al.] // Funct. Mater. 2016. Vol. 23 (2). P. 268-273.

36. Стабильные ядерные спины 13C в комплексах «NV-аксиальный 13C» в алмазе: Предсказание характеристик сверхтонкого взаимодействия моделированием кластера C510[NV]H252./ А.П. Низовцев [и др.] // Материалы V Междунар. конф. «Наноструктурные материалы-2016: Беларусь-Россия-Украина». Минск, 2016. С. 175-178.

37. Квантово-химическое моделирование электронных свойств функционализованных наноалмазов с центром окраски типа NV- / А.В. Лузанов [и др.] // Материалы V Междунар. конф. «Наноструктурные материалы-2016: Беларусь-Россия-Украина». Минск, 2016. С. 517-520.

38. Стабильные электронно-ядерные спиновые системы NV-13C в алмазе для квантовых технологий / А.П. Низовцев [и др.] // Изв. НАН Беларуси. 2017. № 1. С. 98-110.

39. Stable Electron-Nuclear Spin Systems NV-13C in Diamond for Quantum Technologies / A.L. Pushkarchuk [et al.] // Nonlinear Dynamics and Application: Proceeding of the 23 Annual Seminar NPCS'2017. 2017. Vol. 23. P. 150-158.

40. Robust electron-nuclear spin systems NV-13C in diamond for quantum technologies / A.P. Nizovtsev [et al.] // Physics, Chemistry and Application of Nanostructures. Singapore: World Scientific, 2017. P. 69-73.

41. Non-flipping 13C spins in NV diamond: Hyperfine and Spatial Characteristics by DFT Simulation of the C510[NV]H252 Cluster A.P. Nizovtsev [et al.] // Book of Abstracts and Program of XV International Conference on Quantum Optics and Quantum Information, Minsk, Belarus. 2017. P. 43.

42. Новые парамагнитные центры окраски SiV, GeV и SnV в алмазе для квантовых технологий: характеризация методами квантовой химии / А.П. Низовцев [и др.] // Сб. науч. ст. X Междунар. конф. «Фуллерены и наноструктуры в конденсированных средах». Минск, 2018. C. 11-14.

43. Nanojelektronika: Teorija i praktika / V.E. Borisenko [i dr.]. M.: Binom, 2013. 366 s. (in Russ.)

44. Borisenko V.E., Daniljuk A.L., Migas D.B. Spintronika. M.: Laboratorija znanij, 2017. 229 s. (in Russ.)

45. Borisenko V.E., Ossicini S. What is What in the Nanoworld. Third, Revised and Enlarged Edition. Weinheim: Wiley-VCH, 2012. 601 p.

46. Krivosheeva A.V., Shaposhnikov V.L., Borisenko V.E. Metodika modelirovanija jelektronnyh svojstv ob'emnyh poluprovodnikovyh soedinenij // Dokl. BGUIR. 2017. № 4 (106). S. 70-76. (in Russ.)

47. Electronic and optical properties of two-dimensional MoS2, WS2, and Mo0.5W0.5S2 from first-principles. In: Physics, Chemistry and Application of Nanostructures / A.V. Krivosheeva [et al.]. Singapore: World Scientific, 2013. P. 32-35.

48. Electronic and dynamical properties of bulk and layered MoS2 / A.V. Krivosheeva [et al.] // Dokl. BGUIR. 2014. № 5 (83). S. 34-37. (in Russ.)

49. Band gap modifications of two-dimensional defected MoS2 / A.V. Krivosheeva [et al.] // Int. J. Nanotechnol. 2015. Vol. 12 (8/9). P. 654-662.

50. Theoretical study of defect impact on two-dimensional MoS2 / A.V. Krivosheeva [et al.] // J. of Semiconductors. 2015. Vol. 36 (12). P. 122002.

51. Krivosheeva A.V., Shaposhnikov V.L., Borisenko V.E. Modifikacija shiriny zapreshhennoj zony MoS2 pri zameshhenii atomov sery atomami tellura // Dokl. BGUIR. 2016. № 4 (98). S. 98-101. (in Russ.)

52. Krivosheeva A.V., Shaposhnikov V.L., Borisenko V.E. Zonnaja struktura i opticheskie svojstva dihal'kogenidov molibdena i vol'frama // Vestnik Fonda fundamental'nyh issledovanij. 2016. T. 3. S. 41-48. (in Russ.)

53. Raschet fononnyh spektrov dvumernyh kristallov disul'fida i ditellurida molibdena / A.Ju. Alekseev [i dr.] // Zhurnal prikladnoj spektroskopii. 2016. T. 83 (6). S. 989-992. (in Russ.)

54. Modelirovanie spektra fononov v trehkomponentnyh dvumernyh kristallah dihal'kogenidov tugoplavkih metallov / A.Ju. Alekseev [i dr.] // Zhurnal prikladnoj spektroskopii. 2017. T. 84 (4). S. 554-560. (in Russ.)

55. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework GVJ-2e method / J. Gusakova [et al.] // Phys. Status Solidi A. 2017. Vol. 214 (12). P. 1700218 (1-7).

56. Lattice thermal conductivity of transition metal dichalcogenides / A. Alexeev [et al.] // Materials Physics and Mechanics. 2018. Vol. 39 (1). P. 1-7.

57. Shaposhnikov V.L., Krivosheeva A.V., Borisenko V.E. Impact of Defects on Electronic Properties of Heterostructures Constructed From Monolayers of Transition Metal Dichalcogenides // Phys. Stat. Sol. B. 2019. DOI: 10.1002/pssb.201800355.

58. Krivosheeva A.V., Shaposhnikov V.L., Borisenko V.E. Vlijanie vakansionnyh defektov i primesej na jelektronnuju strukturu dvumernyh kristallov MoS2, MoSe2, WS2 i WSe2 // Dokl. NAN Belarusi. 2016. T. 60, № 6. S. 48-53. (in Russ.)

59. Krivosheeva A.V., Shaposhnikov V.L. Magnitnoe uporjadochenie v geterostrukturah na osnove dvumernyh kristallov dihal'kogenidov tugoplavkih metallov, legirovannyh margancem // Vestn. fonda fundamental'nyh issledovanij. 2017. T. 80, № 2 (17). S. 106-112. (in Russ.)

60. Krivosheeva A.V., Shaposhnikov V.L., Alekseev A.Ju. Vlijanie defektov na jelektronnye svojstva struktur iz sloistyh dihal'kogenidov tugoplavkih metallov // Dokl. BGUIR. 2016. № 8 (102). S. 76-81. (in Russ.)

61. Krivosheeva A.V. Perspektivnye poluprovodnikovye soedinenija i nanostruktury dlja optojelektroniki, fotovol'taiki i spintroniki // Dokl. BGUIR. 2016. № 3 (97). S. 12-17. (in Russ.)

62. Semiconducting Silicides / Ed. by V.E. Borisenko. Berlin: Springer, 2000. 348 p.

63. Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films / D.B. Migas [et al.] // Surface Science. 2018. Vol. 670, № 1. P. 51-57.

64. Electronic properties of thin BaSi2 films with different orientations / D.B. Migas [et al.] // Jpn. J. Appl. Phys. 2017. Vol. 56, № 3. P. 05DA03.

65. Transport properties of n- and p-type polycrystalline BaSi2 / V.E. Borisenko [et al.] // Thin Solid Films. 2018. Vol. 661, № 4. P. 7-15.

66. Conductive CaSi2 transparent in the near infra-red range / V.E. Borisenko [et al.] // J. of Alloys and Compounds. 2019. Vol. 770, № 2. P. 710-720.

67. Role of edge facets on stability and electronic properties of III-V nanowires / / D.B. Migas [et al.] // Nano Convergence. 2015. Vol. 2. P. 14.

68. Revising morphology of №111>-oriented silicon and germanium nanowires / D.B. Migas [et al.] // Nano Convergence. 2015. Vol. 2. P. 16.

69. Orientation effects in morphology and electronic properties of anatase TiO2 one-dimensional nanostructures. I. Nanowires / D.B. Migas [et al.] // Phys. Chem. Chem. Phys. 2014. Vol. 16, № 3. P. 9479-9489.

70. Orientation effects in morphology and electronic properties of anatase TiO2 one-dimensional nanostructures. II. Nanotubes / D.B. Migas [et al.] // Phys. Chem. Chem. Phys. 2014. Vol. 16, № 3. P. 9490-9498.

71. Electronic properties of semiconducting Ca2Si silicide: From bulk to nanostructures by means of first principles calculations / D.B. Migas [et al.] // Jpn. J. Appl. Phys. 2015. Vol. 54, № 2. P. 07JA03.

72. Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]-H172 diamond cluster hosting nitrogen-vacancy center / A.P. Nizovtsev [et al.] // New Journal of Physics. 2014. Vol. 16. P. 083014(1-21).

73. Sverhtonkoe vzaimodejstvie NV centra v almaze s atomom 13S, raspolozhennym na osi centra: modelirovanie metodom DFT / A.L. Pushkarchuk [i dr.] // Sb. nauch. st. VIII Mezhdunar. konf. «Fullereny i nanostruktury v kondensirovannyh sredah». Minsk, 2014. S. 164-169. (in Russ.)

74. Non-flipping 13C spins near an NV center in diamond: Hyperfine and Spatial Characteristics by DFT Simulation of the C510[NV]H252 Cluster / A.P. Nizovtsev [et al.] // New Journal of Physics. 2018. Vol. 20. P. 023022 (1-15).

75. DFT simulation of hyperfine interactions in the NV hosting carbon cluster C510[NV]- H252: predictions for the «on-NV-axis» 13C sites / A.P. Nizovtsev [et al.] // Physics, Chemistry and Application of Nanostructures. Singapore: World Scientific, 2015. P. 24-27.

76. Non-flipping 13C nuclear spins in NV diamond: Hyperfine and spatial characteristics from DFT simulation of the NV hosting H-terminated cluster C510[NV]H252 / A.P. Nizovtsev [et al.] // Book of Abstracts of XIV International Conference on Quantum Optics and Quantum Information, Minsk, Belarus. 2015. P. 47.

77. A semiempirical description of functionalized nanodiamonds with NV color centers / A.V. Luzanov [et al.] // Funct. Mater. 2016. Vol. 23 (2). P. 268-273.

78. Stabil'nye jadernye spiny 13C v kompleksah «NV-aksial'nyj 13C» v almaze: Predskazanie harakteristik sverhtonkogo vzaimodejstvija modelirovaniem klastera C510[NV]H252./ A.P. Nizovcev [i dr.] // Materialy V Mezhdunar. konf. «Nanostrukturnye materialy-2016: Belarus'-Rossija-Ukraina». Minsk, 2016. S. 175-178. (in Russ.)

79. Kvantovo-himicheskoe modelirovanie jelektronnyh svojstv funkcionalizovannyh nanoalmazov s centrom okraski tipa NV- / A.V. Luzanov [i dr.] // Materialy V Mezhdunar. konf. «Nanostrukturnye materialy-2016: Belarus'-Rossija-Ukraina». Minsk, 2016. S. 517-520. (in Russ.)

80. Stabil'nye jelektronno-jadernye spinovye sistemy NV-13C v almaze dlja kvantovyh tehnologij / A.P. Nizovcev [i dr.] // Izv. NAN Belarusi. 2017. № 1. S. 98-110. (in Russ.)

81. Stable Electron-Nuclear Spin Systems NV-13C in Diamond for Quantum Technologies / A.L. Pushkarchuk [et al.] // Nonlinear Dynamics and Application: Proceeding of the 23 Annual Seminar NPCS'2017. 2017. Vol. 23. P. 150-158.

82. Robust electron-nuclear spin systems NV-13C in diamond for quantum technologies / A.P. Nizovtsev [et al.] // Physics, Chemistry and Application of Nanostructures. Singapore: World Scientific, 2017. P. 69-73.

83. Non-flipping 13C spins in NV diamond: Hyperfine and Spatial Characteristics by DFT Simulation of the C510[NV]H252 Cluster A.P. Nizovtsev [et al.] // Book of Abstracts and Program of XV International Conference on Quantum Optics and Quantum Information, Minsk, Belarus. 2017. P. 43.

84. Novye paramagnitnye centry okraski SiV, GeV i SnV v almaze dlja kvantovyh tehnologij: harakterizacija metodami kvantovoj himii / A.P. Nizovcev [i dr.] // Sb. nauch. st. X Mezhdunar. konf. «Fullereny I nanostruktury v kondensirovannyh sredah». Minsk, 2018. S. 11-14.


Review

For citations:


Borisenko V.E., Krivosheeva A.V., Migas D.B., Pushkarchuk V.A., Filonov A.B., Shaposhnikov V.L. Atomic structure, fundamental electronic, optical and magnetic properties of low-dimensional structures of semiconductors. Doklady BGUIR. 2019;(2):73-84. (In Russ.)

Views: 431


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)