Preview

Doklady BGUIR

Advanced search

Convolutional neural model in a TASK of classification images of the isolated digits

Abstract

The analysis of convolutional neural model is done. The software is developed, allowing to train and test convolutional neural networks of base architecture LeNet-5. Efficiency of technique multi training and distortions of training images is shown. The qualifier of images of the isolated figures is constructed. The estimation of stability of its characteristics on examples of known hand-written and font databases is done.

Keywords


About the Author

N. N. Kuzmitsky
Брестский государственный технический университет
Belarus


References

1. Головко В.А. Нейронные сети: обучение, организация и применение. М., 2001.

2. Simard P.Y., Steinkraus D., Platt J. // Int. Conf. on Document Analysis and Recognition. 2003. P. 958-963.

3. Hubel D.H., Wiesel T.N. // Journal of Physiology London., 1962. Vol. 15. P 106-154.

4. Fukushima K., Miyake S. // Pattern Recognition. 1982. Vol. 15. P. 455-469.

5. LeCun Y., Kavukvuoglu K., Farabet C. // Proc. Int. Symposium on Circuits and Systems. 2010. P 253-256.

6. LeCun Y., Bottou L., Bengio Y., et. al. // Proceedings of the IEEE. 1998. P. 2278-2324.

7. LeCun Y., Bottou L., Or G.B., et. al. // Springer Lecture Notes in Computer Sciences. 1998. № 1524. P. 5-50.

8. LeCun Y. The MNIST database of handwritten digits // http://yann.lecun.com/exdb/mnist.

9. Grother P.J. Nist special database 19 - handprinted forms and characters database // National Institute of Standards and Thechnology (NIST), Tech. Rep. 1995.

10. Осовский С. Нейронные сети для обработки информации. М., 2002.

11. Optdigits database // http://archive.ics.uci.edu/ml/machine-learning-databases/optdigits.


Review

For citations:


Kuzmitsky N.N. Convolutional neural model in a TASK of classification images of the isolated digits. Doklady BGUIR. 2012;(7):65-71. (In Russ.)

Views: 523


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)