2012 № 5 (67)

УДК 517.977

РАСШИРЕННОЕ УСЛОВИЕ ПОСТОЯННОГО РАНГА И ЕГО ПРИЛОЖЕНИЯ К ПАРАМЕТРИЧЕСКИМ ЗАДАЧАМ ОПТИМИЗАЦИИ

С.В. АКТАНОРОВИЧ, Л.И. МИНЧЕНКО, А.Н. ТАРАКАНОВ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 2 марта 2012

Предлагается модификация известного условия регулярности постоянного ранга Р.Жанена, позволяющая доказать дифференцируемость по направлениям функции оптимального значения в задаче параметрического нелинейного программирования.

Ключевые слова: нелинейное программирование, условия регулярности, функция оптимального значения, дифференцируемость по направлениям.

Введение

В теории оптимизации дифференциальным свойствам функции оптимального значения посвящено большое число публикаций (обзор их можно найти в работах [1, 2]) ввиду значения данных свойств в анализе устойчивости задачи относительно возмущений ее параметров.

Рассмотрим функцию оптимального значения

$$\varphi(x) = \inf \left\{ f(x, y) \mid y \in F(x) \right\}$$

определенную для задачи минимизации

$$f(x,y) \to \inf_{y}$$

на множестве

$$F(x) = \left\{ y \in \mathbb{R}^m \mid h_i(x, y) \le 0 \quad i \in I , h_i(x, y) = 0 \quad i \in I_0 \right\},\,$$

где $x \in R^n$ — вектор параметров, f(x,y), $h_i(x,y)$ i=1,...,p — непрерывно дифференцируемые функции из $R^n \times R^m$ в R, $I=\{1,...,s\}$, $I_0=\{s+1,...,p\}$.

Обозначим через

$$\omega(x) = \left\{ y \in F(x) \mid f(x, y) = \varphi(x) \right\}$$

множество оптимальных решений поставленной задачи, через F – многозначное отображение, ставящее в соответствие каждой точке $x \in R^n$ множество $F(x) \subset R^m$. Будем предполагать, что для точки $x_0 \in dom F$ существуют окрестность $V(x_0)$ и ограниченное множество $Y_0 \subset R^m$ такие, что $\omega(x) \subset Y_0$ для всех $x \in V(x_0)$.

Пусть
$$z = (x, y), z_0 = (x_0, y_0), \overline{z} = (\overline{x}, \overline{y})$$
. Введем функцию Лагранжа

$$L(z,\lambda)=f(z)+\langle \lambda,h(z) \rangle$$
 , где $\lambda=(\lambda_1,...,\lambda_p)$, $h=(h_1,...,h_p)$.

Обозначим через

$$\Lambda(z) = \left\{ \lambda \in \mathbb{R}^p \mid \nabla_x L(z, \lambda) = 0, \lambda_i \ge 0 \text{ in } \lambda_i h_i(z) = 0, i \in I \right\}$$

множество множителей Лагранжа и через $I(z) = \{i \in I \mid h_i(z) = 0\}$ множество индексов активных ограничений в точке $z = (x, y) \in grF$.

Пусть $\overline{x} \in R^n$. Для функции оптимального значения изучим существование производной по направлению \overline{x} в точке x_0 :

$$\varphi'(x_0; \overline{x}) = \lim_{t \downarrow 0} t^{-1} (\varphi(x_0 + t\overline{x}) - \varphi(x_0)).$$

Наличие дифференцируемости функции оптимального значения по направлениям тесно связано с налагаемыми на ограничения задачи условиями регулярности, среди которых одним из самых известных является условие постоянного ранга, введенное в работе Р. Жанена [3]. Условие регулярности постоянного ранга (CRCQ) достаточно часто используется в нелинейном программировании для исследования дифференцируемости функции оптимального значения и устойчивости и чувствительности решений экстремальных задач относительно возмущений параметров [4, 5]. В то же время явными недостатками условия CRCQ являются как достаточная жесткость (существует достаточно широкий круг задач, для которых оно не выполняется там, где другие условия регулярности могут быть вполне эффективны), так и трудность его проверки. В работах [6, 7] было получено так называемое ослабленное условие регулярности постоянного ранга, которое позволяет в определенной степени минимизировать отмеченные недостатки CRCQ.

Определение 1 ([6, 7]). Будем говорить, что в точке $z_0=(x_0,y_0)\in grF$ выполнено ослабленное условие регулярности постоянного ранга (RCRCQ), если для любого подмножества индексов J такого, что $I_0\subset J\subset I(z_0)\cup I_0$, система векторов $\nabla_y h_i(z), \quad i\in J$ имеет постоянный ранг в некоторой окрестности точки z_0 .

Ослабленное условие регулярности постоянного ранга и его приложения вызвали ряд интересных публикации [8-11] по данной тематике. В то же время следует отметить, что ни выполнение классического условия постоянного ранга, ни его обобщения RCRCQ не обеспечивают сами по себе дифференцируемости по направлениям функции оптимального значения в задаче нелинейного программирования и требуют наличия дополнительных условий. В этой связи предлагается расширенное условие постоянного ранга (ECR), которое в совокупности с RCRCQ позволяет гарантировать существование производной $\varphi'(x_0; \overline{x})$.

Определение 2. Будем говорить, что многозначное отображение F удовлетворяет расширенному условию постоянного ранга (или ECR-регулярно) по направлению \overline{x} в точке $z_0 = (x_0, y_0), \ y_0 \in F(x_0)$, если для любого подмножества индексов $J = K \cup I_0$, где $K \subset I(z_0)$, система векторов

$$\begin{pmatrix} \nabla_{\boldsymbol{y}} h_i(\boldsymbol{x}, \boldsymbol{y}) \\ \langle \nabla_{\boldsymbol{x}} h_i(\boldsymbol{x}, \boldsymbol{y}), \overline{\boldsymbol{x}} \rangle \end{pmatrix} \ i \in J$$

имеет постоянный ранг в некоторой окрестности точки $z_0 = (x_0, y_0)$.

Следуя [2], введем нижнюю производную Дини многозначного отображения F в точке $z_0=(x_0,y_0)\in grF$ по направлению \overline{x} :

$$DF(z_0; \overline{x}) = \{ \overline{y} \in R^m \mid \exists o(t) \text{ такая, что } o(t) / t \to 0 \text{ для } t \downarrow 0$$
 и $y_0 + t \overline{y} + o(t) \in F(x_0 + t \overline{x}) \ \forall t \ge 0 \}$

и множество

$$\Gamma((x,y);\overline{x}) = \left\{ \overline{y} \in R^m \mid \langle \nabla h_i(x,y), (\overline{x},\overline{y}) \rangle \leq 0 \quad i \in I(x,y), \quad \langle \nabla h_i(x,y), (\overline{x},\overline{y}) \rangle = 0 \quad i \in I_0 \right\}$$

$$\Gamma(z_0;\overline{x}) = \left\{ \overline{y} \in R^m \mid \langle \nabla h_i(z_0), \overline{z} \rangle \leq 0 \quad i \in I(z_0), \quad \langle \nabla h_i(z_0), \overline{z} \rangle = 0 \quad i \in I_0 \right\}, \quad \overline{z} = (\overline{x},\overline{y}).$$

Покажем, что при $\overline{x} \in dom\Gamma(z_0;.)$ из условия ECR-регулярности в точке $z_0 = (x_0, y_0) \in grF$ следует частичное выполнение условия RCRCQ в этой точке.

Действительно, положим, что $I^2(z_0,\overline{z})=\left\{i\in I(z_0)\mid \langle \nabla h_i(z_0),(\overline{x},\overline{y})\rangle=0\right\}$. Пусть $\overline{y}\in\Gamma(z_0;\overline{x})$, $J=J(\overline{z})=I^2(z_0,\overline{z})\bigcup I_0$. Обозначим $z=(x,y),\ \overline{z}=(\overline{x},\overline{y})$. Тогда $\langle \nabla_y h_i(z_0),\overline{y}\rangle+\langle \nabla_x h_i(z_0),\overline{x}\rangle=0$ $i\in J$ и, следовательно, вследствие условия ECR-регулярности для всех точек z, достаточно близких к z_0 , справедливо

$$rank \begin{pmatrix} \nabla_{y} h_{i}(z) & i \in J \\ \langle \nabla_{x} h_{i}(z), \overline{x} \rangle \end{pmatrix} = rank \begin{pmatrix} \nabla_{y} h_{i}(z_{0}) & i \in J \\ \langle \nabla_{x} h_{i}(z_{0}), \overline{x} \rangle \end{pmatrix} = rank \begin{pmatrix} \nabla_{y} h_{i}(z_{0}) & i \in J \end{pmatrix} = l,$$

откуда

$$rank(\nabla_{v}h_{i}(z) \quad i \in J) \leq l.$$

Последнее означат, что

$$rank(\nabla_{y}h_{i}(z_{0}) \quad i \in J) = rank(\nabla_{y}h_{i}(z) \quad i \in J) = l.$$

Таким образом, при выполнении в точке z_0 условия ECR-регулярности по направлению \overline{x} система векторов $\{\nabla_y h_i(z) \ i \in J\}$ при всех $J = J(\overline{z}) = I^2(z_0, \overline{z}) \bigcup I_0$ и всех $\overline{y} \in \Gamma(z_0; \overline{x})$ сохраняет ранг в некоторой окрестности z_0 .

Вычисление производной многозначного отображения ${\it F}$

Следующая теорема позволяет вычислять производные ECR -регулярного отображения F .

Теорема 1. Пусть многозначное отображение F ECR-регулярно в точке $z_0=(x_0,y_0)\in grF$ по направлению $\overline{x}\in dom\Gamma(z_0;.)$. Тогда $DF(z_0;\overline{x})=\Gamma(z_0;\overline{x})$.

Доказательство. Пусть $\overline{y}\in\Gamma(z_0;\overline{x})$. Положим $J=J(\overline{z})=I^2(z_0,\overline{z})\bigcup I_0$, где $I^2(z_0,\overline{z})=\left\{i\in I(z_0)\mid \langle\nabla h_i(z_0),(\overline{x},\overline{y})\rangle=0\right\}$. Тогда для любой m-векторной функции r(t) такой, что $r(t)/t\to 0$ при $t\downarrow 0$ найдется число $t_0>0$ такое, что для всех $i\in I\setminus I^2(z_0,\overline{z})$

$$h_i(x_0 + t\overline{x}, y_0 + ty + r(t)) < 0 \quad t \in (o, t_0).$$

Действительно, если $i \in I \setminus I(z_0)$, то $h_i(x_0, y_0) < 0$ и, значит,

$$h_i(x_0 + t\overline{x}, y_0 + t\overline{y} + r(t)) = h_i(x_0, y_0) + t\langle \nabla h_i(x_0 + \theta t\overline{x}, y_0 + \theta (t\overline{y} + r(t))), (\overline{x}, \overline{y}) \rangle < 0$$

 $(0 < \theta < 1)$ при достаточно малых t > 0.

Если $i \in I(z_0)$, но $i \notin I^2(z_0, \overline{z})$, то

$$h_i(x_0 + t\overline{x}, y_0 + ty + r(t)) = h_i(x_0, y_0) + t\langle \nabla h_i(x_0, y_0), (\overline{x}, \overline{y}) \rangle + \gamma(t) =$$

= $t\langle \nabla h_i(x_0, y_0), (\overline{x}, \overline{y}) \rangle + \gamma(t),$

где $\gamma(t) = \langle \nabla_y h_i(x_0, y_0), r(t) \rangle + \langle \nabla h_i(x_0 + \theta t \overline{x}, y_0 + \theta (t \overline{y} + r(t))) \rangle - \langle \nabla h_i(x_0, y_0), (t \overline{x}, t \overline{y} + r(t)) \rangle,$ (0<0<1).

Поскольку $\langle \nabla h_i(x_0,y_0),\ (\overline{x},\overline{y}) \rangle < 0$ и $\gamma(t)/t \to 0$ при $t \to 0$, то $h_i(x_0+t\overline{x},\ y_0+t\overline{y}+r(t)) < 0$, $i \in J$, для всех достаточно малых положительных t.

Пусть |J|=N . Поскольку $J=J(\overline{y})=I^2(y_0,\overline{y})\bigcup I_0$, то в точке (t,r)=(0,0) у матрицы Якоби системы функций $h_i(x_0+t\overline{x},y_0+t\overline{y}+r)$ $i\in J$ относительно r,

$$\begin{bmatrix}
\frac{\partial h_{1}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial r_{1}} & \dots & \frac{\partial h_{1}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial r_{m}} & \frac{\partial h_{1}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial t} \\
\frac{\partial h_{2}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial r_{1}} & \dots & \frac{\partial h_{2}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial r_{m}} & \frac{\partial h_{2}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial t} \\
\frac{\partial h_{N}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial r_{1}} & \dots & \frac{\partial h_{N}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial r_{m}} & \frac{\partial h_{N}(x_{0}+t\overline{x},y_{0}+t\overline{y}+r)}{\partial t}
\end{bmatrix}$$
(1)

последний столбец нулевой. Следовательно, ее ранг в данной точке совпадает с рангом матрицы Якоби системы функций $h_i(y_0 + t\overline{y} + r)$ $i \in J$ относительно r

$$\begin{bmatrix} \frac{\partial h_1(x_0 + t\overline{x}, y_0 + t\overline{y} + r)}{\partial r_1} & \dots & \frac{\partial h_1(x_0 + t\overline{x}, y_0 + t\overline{y} + r)}{\partial r_m} \\ \frac{\partial h_2(x_0 + t\overline{x}, y_0 + t\overline{y} + r)}{\partial r_1} & \dots & \frac{\partial h_2(x_0 + t\overline{x}, y_0 + t\overline{y} + r)}{\partial r_m} \\ \dots & \dots & \dots & \dots \\ \frac{\partial h_N(x_0 + t\overline{x}, y_0 + t\overline{y} + r)}{\partial r_1} & \dots & \frac{\partial h_N(x_0 + t\overline{x}, y_0 + t\overline{y} + r)}{\partial r_m} \end{bmatrix}.$$

Пусть ранг этой матрицы в точке (t,r)=(0,0) равен l. Поскольку

$$\frac{\partial h_i(x_0 + t\overline{x}, y_0 + t\overline{y} + r)}{\partial t} = \langle \nabla_x h_i(x_0 + t\overline{x}, y_0 + t\overline{y} + r), \overline{x} \rangle + \langle \nabla_y h_i(x_0 + t\overline{x}, y_0 + t\overline{y} + r), \overline{y} \rangle,$$

то в силу условия (*ECR*) матрица Якоби (1) системы функций $h_i(x_0+t\overline{x},y_0+t\overline{y}+r)$ $i\in J$ относительно r сохранит ранг l и в некоторой окрестности (0,0). Тогда (см. [12] стр.505) в этой окрестности l функций системы (для определенности перенумеруем их так чтобы это были $h_1,...,h_l$) независимы, а остальные (если они есть) от них зависят, т.е. $h_{l+1}=\varphi_1(h_1,...h_l),...,h_{l+q}=\varphi_q(h_1,...h_l)$, где $\varphi_1,...,\varphi_q$ – непрерывные функции с непрерывными частными производными, q=N-l.

Рассмотрим в окрестности точки (0,0) систему уравнений

$$\begin{cases} h_{1}(x_{0} + t\overline{x}, y_{0} + t\overline{y} + r) = 0 \\ \dots \\ h_{l}(x_{0} + t\overline{x}, y_{0} + t\overline{y} + r) = 0 \\ \dots \\ h_{l+q}(x_{0} + t\overline{x}, y_{0} + t\overline{y} + r) = 0, \end{cases}$$
(2)

где l+q=|J|.

Данная система равносильна системе

$$\begin{cases} h_1(x_0 + t\overline{x}, y_0 + t\overline{y} + r) = 0\\ \dots\\ h_l(x_0 + t\overline{x}, y_0 + t\overline{y} + r) = 0 \end{cases}$$
(3)

с дополнительным условием

$$\begin{cases} h_{l+1}(x_0 + t\overline{x}, y_0 + t\overline{y} + r) = \varphi_1(h_1(x_0 + t\overline{x}, y_0 + t\overline{y} + r), ...h_l(x_0 + t\overline{x}, y_0 + t\overline{y} + r)) = 0 \\ ... \\ h_{l+q}(x_0 + t\overline{x}, y_0 + t\overline{y} + r) = \varphi_q(h_1(x_0 + t\overline{x}, y_0 + t\overline{y} + r), ...h_l(x_0 + t\overline{x}, y_0 + t\overline{y} + r)) = 0. \end{cases}$$

При этом

$$\varphi_1(h_1(x_0, y_0), ..., h_l(x_0, y_0)) = 0, ..., \varphi_a(h_1(x_0, y_0), ..., h_l(x_0, y_0)) = 0$$

и, следовательно,

$$\varphi_1(0,...,0) = 0,...., \varphi_q(0,...,0) = 0.$$

Если l=m, то по теореме о неявной функции (см. [12], стр. 488) система (3) определяет в окрестности (0,0) неявную непрерывно дифференцируемую функцию r=r(t) такую, что

$$r(0) = 0$$
 и $\frac{dr}{dt}(0) = \lim_{t\to 0} \frac{r(t)}{t} = 0$.

Если l < m, то, не ограничивая общности, можно предположить, что ранг системы (3) равен l относительно первых l координат вектора r. Положим в этом случае $r = (\overline{r}, \overline{\overline{r}})$, где $\overline{r} = (r_1, ..., r_l)$, $\overline{\overline{r}} = (r_{l+1}, ..., r_m)$.

Тогда в силу теоремы о неявной функции система (3) определяет в окрестности точки (0,0,0) неявную непрерывно дифференцируемую функцию $\overline{r}=\overline{r}(t,\overline{\overline{r}})$, удовлетворяющую условиям

$$\overline{r}(0,0) = 0$$
, $\frac{\partial \overline{r}}{\partial t}(0,0) = 0$.

Пусть $\overline{r} = 0$, положим $\overline{r} = \overline{r}(t) = \overline{r}(t,0)$. Тогда функция $r = r(t) = (\overline{r}(t),0)$ удовлетворяет системе (3), а значит и (2). Кроме того, $r(t)/t \to 0$ при $t \downarrow 0$.

Таким образом, при выполнении условий леммы для $\overline{y} \in \Gamma(z_0; \overline{x})$ существует функция r(t) такая, что при $t \in (o, t_0)$, где t_0 достаточно малое положительное число, справедливы условия

$$h_i(x_0 + t\overline{x}, y_0 + t\overline{y} + r(t)) = 0 \ i \in J$$
,

$$h_i(x_0 + t\overline{x}, y_0 + t\overline{y} + r(t)) < 0 \ i \in I \setminus J$$

и
$$r(t)t^{-1} \rightarrow 0$$
 при $t \downarrow 0$.

Последнее означает, что $y_0+t\overline{y}+r(t)\in F(x_0+t\overline{x})$ при $t\in[0,t_0]$ и, следовательно, $\overline{y}\in DF(x_0,y_0;\overline{x})$. Таким образом, $\Gamma(z_0;\overline{x})\subset DF(z_0;\overline{x})$. Поскольку включение $DF(z_0;\overline{x})\subset \Gamma(z_0;\overline{x})$ всегда справедливо, получаем $\Gamma(z_0;\overline{x})=DF(z_0;\overline{x})$.

Производные функции оптимального значения

Теорема 2. Пусть многозначное отображение F во всех точках $z_0 = (x_0, y_0)$, где $y_0 \in \omega(x_0)$, удовлетворяет условиям RCR-регулярности и ECR-регулярности по направлению $\overline{x} \in dom\Gamma(z_0;.)$. Тогда функция ϕ дифференцируема в точке x_0 по направлению \overline{x} , причем

$$\varphi'(x_0; \overline{x}) = \min_{y_0 \in \omega(x_0)} \min_{\overline{y} \in \Gamma(z_0; \overline{x})} \langle \nabla f(z_0), \overline{z} \rangle = \min_{y_0 \in \omega(x_0)} \max_{\lambda \in \Lambda(z_0)} \langle \nabla_x L(z_0, \lambda), \overline{x} \rangle. \tag{4}$$

Доказательство.

1. Пусть $y_0 \in \omega(x_0)$. Поскольку в силу теоремы 1 $\Gamma(z_0; \overline{x}) = DF(z_0; \overline{x})$ и $\overline{x} \in dom\Gamma(z_0; .)$, то для любого $\overline{y} \in \Gamma(z_0; \overline{x})$ найдется функция o(t) такая, что $o(t)/t \to 0$ при $t \to 0$ и $y_0 + t\overline{y} + r(t) \in F(x_0 + t\overline{x})$ при всех t > 0. Следовательно,

$$\varphi(x_0 + t\overline{x}) - \varphi(x_0) \le f(x_0 + t\overline{x}, y_0 + t\overline{y} + o(t)) - f(x_0, y_0),$$

откуда

$$D^{+}\varphi(x_{0}; \overline{x}) = \lim_{t \downarrow 0} \sup t^{-1} \left[\varphi(x_{0} + t\overline{x}) - \varphi(x_{0}) \right] \leq \langle \nabla f(z_{0}), \overline{z} \rangle$$

для всех $\overline{z}=(\overline{x},\overline{y})$. Поскольку y_0 и \overline{y} произвольные элементы из множеств $\omega(x_0)$ и $\Gamma(z_0;\overline{x})$, то из последнего соотношения получается

$$D^{+}\varphi(x_{0}; \overline{x}) \leq \inf_{y_{0} \in \Theta(x_{0})} \inf_{\overline{y} \in \Gamma(z_{0}; \overline{x})} \langle \nabla f(z_{0}), \overline{z} \rangle$$

$$(5)$$

2. Пусть предел $D_+ \varphi(x_0; \overline{x}) = \liminf_{t \downarrow 0} t^{-1} (\varphi(x_0 + t \overline{x}) - \varphi(x_0))$ достигается на последовательности $t_k \downarrow 0$ и пусть $x_k = x_0 + t_k \overline{x}$, $y_k \in \omega(x_k)$ $k = 1, 2, \ldots$ Не ограничивая общности, можно считать, что последовательность $\{y_k\}$ сходится $y_k \to y_0$, причем $y_0 \in F(x_0)$ в силу замкнутости многозначного отображения F.

Поскольку
$$\varphi(x_0 + t_k \overline{x}) - \varphi(x_0) \le t_k D^+ \varphi(x_0; \overline{x}) + o(t_k)$$
, то в силу (5)

$$f(x_0, y_0) = \limsup_{k \to \infty} f(x_0 + t_k \overline{x}, y_k) = \limsup_{k \to \infty} \varphi(x_0 + t_k \overline{x}) \le \varphi(x_0)$$

и, следовательно, $y_0 \in \omega(x_0)$.

В силу условия RCRCQ и леммы 5 [10] найдется последовательность $\{y_{0k}\}$ такая, что

$$y_{0k} \in F(x_0)$$
, $|y_{0k} - y_k| \le M |x_k - x_0|$, $M = \text{const} > 0$,

и
$$h_i(x_k, y_k) \le h_i(x_0, y_{0k}) \le 0$$
 $i \in I(x_0, y_0)$.

Тогда, не ограничивая общности, можно считать, что $t_k^{-1}(y_k-y_{0k}) \to \overline{y}_0$ и, следовательно, $y_k=y_{0k}+t_k\overline{y}_0+o(t_k)$. Тогда из соотношений

$$h_i(x_k,y_k) - h_i(x_0,y_{0k}) \leq 0 \quad i \in I(x_0,y_0), \quad h_i(x_k,y_k) - h_i(x_0,y_{0k}) = 0 \quad i \in I_0$$

получаем

$$\langle \nabla h_i(x_0, y_0), (\overline{x}, \overline{y}_0) \rangle \leq 0 \qquad i \in I(x_0, y_0), \ \langle \nabla h_i(x_0, y_0), (\overline{x}, \overline{y}_0) \rangle = 0 \quad i \in I_0,$$

т.е. $\overline{y}_0 \in \Gamma(z_0; \overline{x})$. С другой стороны,

$$\begin{split} &D_{+}\varphi(x_{0};\overline{x}) = \lim_{t_{k}\downarrow 0} t_{k}^{-1}(f(x_{0} + t_{k}\overline{x}, y_{k}) - f(x_{0}, y_{0})) = \\ &= \lim_{t_{k}\downarrow 0} t_{k}^{-1}(f(x_{0} + t_{k}\overline{x}, y_{0k} + t_{k}\overline{y}_{0} + o(t_{k})) - f(x_{0}, y_{0k})) = \langle \nabla f(x_{0}, y_{0}), (\overline{x}, \overline{y}_{0}) \rangle, \end{split}$$

где
$$\overline{y}_0 \in \Gamma(z_0; \overline{x})$$
.

Отсюда
$$D_+ \phi(x_0; \overline{x}) \geq \inf_{y \in \omega(x_0)} \inf_{\overline{y} \in \Gamma((x_0,y); \overline{x})} \langle \nabla f(x_0,y), \overline{z} \rangle = \min_{y \in \omega(x_0)} \min_{\overline{y} \in \Gamma((x_0,y); \overline{x})} \langle \nabla f(x_0,y), \overline{z} \rangle$$
, где $\overline{z} = (\overline{x}, \overline{y})$.

Сравнивая последнюю оценку с оценкой (5), получаем, что существует конечная производная

$$\varphi'(x_0; \overline{x}) = \min_{y_0 \in \omega(x_0)} \min_{\overline{y} \in \Gamma(z_0; \overline{x})} \langle \nabla f(z_0), \overline{z} \rangle.$$

Применение теоремы двойственности в линейном программировании [13] приводит к (4).

Заключение

Предложено обобщение условия регулярности постоянного ранга и на его основе доказаны новые достаточные условия дифференцируемости по направлениям функции оптимального значения в задачах нелинейного программирования.

EXTENDED CONSTANT RANK CONDITION AND ITS APPLICATION TO PARAMETRIC OPTIMIZATION PROBLEMS

S.V. AKTANOROVICH, L.I. MINCHENKO, A.N. TARAKANOV

Abstract

Extended constant rank condition is introduced and its applications to the sensitivity analysis of parametric nonlinear programming problems are studied.

Список литературы

- 1. Bonnans J.F., Shapiro A. Perturbations analysis of optimization problems. New York, 2000.
- 2. Luderer B., Minchenko L., Satsura T. Multivalued analysis and nonlinear programming problems with perturbations. Dordrecht, 2002.
- 3. Janin R. // Mathematical Programming Study. 1984. Vol. 21. P. 110-126.
- 4. Ralph D. and Dempe S // Mathematical Programming 70. 1995. P. 159-172.
- 5. Pang J.-S. and Ralph D. // Math. Oper. Res. 21. 1996. P. 401-426.
- 6. Минченко Л.И., Стаховский С.М. // Докл. НАН Беларуси. 2009. №5. С. 6-10.
- 7. Minchenko L. and Stakhovski S. // Optimization, 2011, Vol. 60, P. 429-440.
- 8. Lu S. // Optimization. 2010. DOI: 10.1080/02331934.2010.527972.
- 9. Andreani R., Haeser G., Schuverdt M.L. et al. // Mathematical Programming. 2011. DOI: 10.1007/s10107-011-0456-0.
- 10. Minchenko L. and Stakhovski S. // SIAM Journal on Optimization. 2011. Vol. 21, №1. P. 314-332.
- 11. *Minchenko L. and Tarakanov A.* // Journal of Optimization Theory and Applications. 2011. Vol. 148. P. 571-579.
- 12. Зорич В.А. Математический анализ. М., 1981.
- 13. Юдин Д.Б., Гольштейн Е.Г. Линейное программирование. М., 1963.