2012 No 5 (67)

УДК 656.052

# ПАРАМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭФФЕКТИВНОСТИ УПРАВЛЕНИЯ АВТОТРАНСПОРТНЫМ СРЕДСТВОМ ПО КАНАЛУ СКОРОСТИ ДВИЖЕНИЯ

## ДИЯБ АБДАЛЛАХ С.А.О.

Белорусский национальный технический университет пр. Независимости 65, Минск, 220013, Беларусь

Поступила в редакцию 20 апреля 2012

Рассмотрено параметрическое моделирование эффективности управления автотранспортным средством. Приведены модели операторов-водителей с различными степенями мотивационного восприятия. Проведен факторный анализ ошибок управления.

*Ключевые слова:* математические модели, эффективность управления, канал управления скоростью движения, ошибки управления.

#### Введение

Быстрый рост количества автомобилей и увеличение насыщенности города автомобильным транспортом приводят к изменению характера всего уличного движения. Одним из отрицательных последствий автомобилизации является дорожная аварийность с высоким травматизмом пострадавших. Аварийные потери имеют экономическую составляющую — это утрата части национального дохода из-за гибели или ранения людей, повреждения машин и грузов, расходов на лечение, пенсии, пособия и т.д.

По оценкам всемирного банка, являющегося инициатором создания Всемирного общества по дорожной безопасности, потери от дорожно-транспортных происшествий могут составлять от 1 до 3 % стоимости валового продукта страны. Общие мировые потери от автомобильных аварий составляют до 500 млрд. долларов США в год.

Значительные потери от дорожно-транспортных происшествий несет и наше государство. По оценке Министерства труда Республики Беларусь гибель одного работника на производстве оценивается в 100000 долларов США. Вероятно, данную цифру реально применить и к дорожной аварийности.

Аварийность — это результат, следствие организации дорожного движения, и бороться нужно не с аварийностью, а с причинами, ее порождающими. Основные направления этой работы определены довольно четко — это общая культура движения, оптимальность выполнения движения, нормативы, информация, электронная автоматика управления. Это обширный и очень дорогостоящий комплекс, который, безусловно, себя окупает.

Проведенный Управлением ГАИ Республики Беларусь мониторинг эксплуатации средств автомобильного транспорта, дорожной сети, дорожно-транспортных происшествий по-казывает, что главной особенностью проблемы безопасности дорожного движения является ее комплексный характер. Следовательно, изучение безопасности дорожного движения, как и предмет научного исследования, требует системного подхода к объекту исследования – системе «человек – автомобиль – безопасность».

# Экспериментальная часть

Структурная схема информационной поведенческой модели оператора-водителя автотранспортного средства с низкой степенью мотивационного восприятия с учетом динамики канала управления скоростью движения имеет вид, представленный на рис. 1.

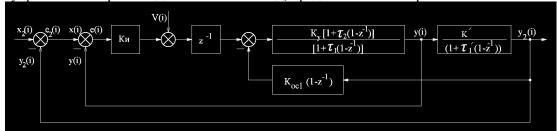



Рис. 1. Структурная схема информационной поведенческой модели оператора-водителя автотранспортного средства с низкой степенью мотивационного восприятия с учетом динамики канала управления скоростью движения

Анализ результатов поведенческого моделирования операторов-водителей с низкой степенью мотивационного восприятия с учетом динамики канала управления скоростью движения автотранспортного средства показывает, что при постоянных (не изменяющихся во времени) задающих воздействиях на канал управления скоростью движения существует установившееся значение динамической ошибки.

Вариант 1 — зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели (рис. 2,a) от коэффициента преобразования k при  $x_2(i)$ =0,1i; v(i)=0;  $K_u$ =1;  $K_y$ =1;  $t_1$ =1;  $t_2$ =1;  $K_{ocl}$ =1;  $t_2$ =1.

Вариант 2 — зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели (рис. 2,6) от коэффициента преобразования  $\tau$  при  $x_2(i)$ =0,1i; v(i)=0;  $K_u$ =1;  $K_y$ =1;  $\tau_1$ =1;  $\tau_2$ =1;  $K_{ocl}$ =1;  $K_z$ =1.

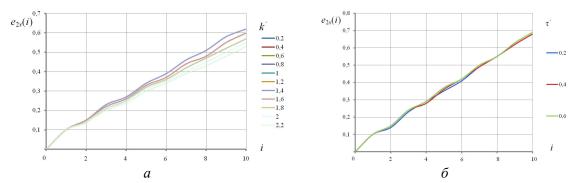



Рис. 2. Зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели от коэффициента преобразования  $k^{'}(a)$  и  $\tau^{'}(\delta)$ 

Увеличение коэффициента преобразования автотранспортного средства при управлении скоростью движения приводит к уменьшению динамических ошибок в канале управления скоростью движения. Увеличение постоянной времени дискретного апериодического звена в модели канала управления скоростью автотранспортного средства приводит к увеличению динамических ошибок. При увеличении интенсивности линейно изменяющегося задающего воздействия динамические ошибки в канале управления скоростью движения увеличиваются и может наступить катастрофная ситуация.

При случайных задающих и возмущающих воздействиях увеличение параметрической интенсивности этих воздействий приводит к увеличению дисперсий ошибок в канале управления скоростью движения. Увеличение коэффициента преобразования канала управления скоростью движения автотранспортного средства приводит к уменьшению дисперсии ошибки по задающему воздействию, увеличение постоянной времени дискретного апериодического звена — к увеличению дисперсии динамической ошибки. Изменение коэффициента преобразования k ведет к увеличению дисперсии ошибки по возмущающему воздействию, увеличение постоянной времени  $\tau$  ведет к увеличению дисперсии ошибки по возмущающему воздействию.

Структурная схема информационной поведенческой модели оператора-водителя автотранспортного средства со средней степенью мотивационного восприятия с учетом динамики канала управления скоростью движения имеет вид, представленный на рис. 3.

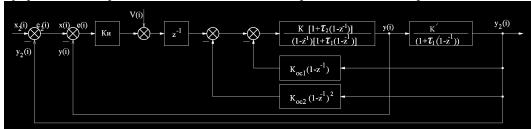



Рис. 3. Структурная схема информационной поведенческой модели оператора-водителя автотранспортного средства с низкой степенью мотивационного восприятия с учетом динамики канала управления скоростью движения

Вариант 3 — зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели (рис. 4,a) от коэффициента преобразования k при  $x_2(i)=0,1i;\ v(i)=0;\ K_u=1;\ K_y=1;\ \tau_1=1;\ \tau_2=1;\ K_{ocl}=1;\ K_{ocl}=1;\ \tau=1.$ 

Вариант 4 — зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели (рис. 4,6) от коэффициента преобразования  $\tau$  при  $x_2(i)=0,1i;\ v(i)=0;\ K_u=1;\ K_y=1;\ \tau_1=1;\ \tau_2=1;\ K_{oc1}=1;\ K_{oc2}=1;\ k=1.$ 

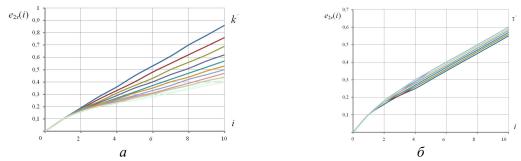



Рис. 4. Зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели (рисунок 3) от коэффициента преобразования k (a) и  $\tau$  ( $\delta$ )

Увеличение коэффициента преобразования автотранспортного средства при управлении скоростью движения приводит к уменьшению динамических ошибок в канале управления скоростью движения. Увеличение постоянной времени дискретного апериодического звена в модели канала управления скоростью автотранспортного средства приводит к увеличению динамических ошибок. При увеличении интенсивности линейно изменяющегося задающего воздействия динамические ошибки в канале управления скоростью движения увеличиваются.

Структурная схема информационной поведенческой модели оператора-водителя автотранспортного средства с высокой степенью мотивационного восприятия с учетом динамики канала управления скоростью движения имеет вид, представленный на рис. 5.

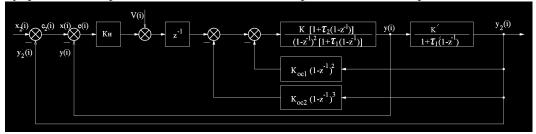



Рис. 5. Структурная схема информационной поведенческой модели оператора-водителя автотранспортного средства с высокой степенью мотивационного восприятия с учетом динамики канала управления скоростью движения

Вариант 5 — зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели (рис. 6,a) от коэффициента преобразования k при  $x_2(i)=0,1i; v(i)=0; K_u=1; K_y=1; \tau_1=1; \tau_2=2; K_{oc1}=1; K_{oc2}=0,1; \tau=1.$ 

Вариант 6 – зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели (рис. 6,6) от коэффициента преобразования  $\tau$  при  $x_2(i)=0,1i;\ v(i)=0;\ K_u=1;\ K_y=1;\ \tau_1=1;\ \tau_2=2;\ K_{ocl}=1;\ K_{ocl}=0,1;\ k=1$ 

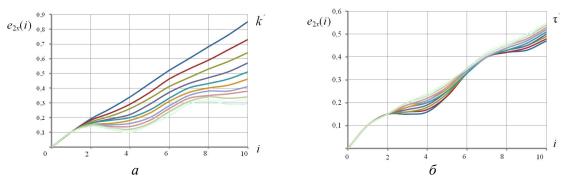



Рис. 6. Зависимость динамической ошибки установившегося режима  $e_{2x}(i)$  в модели от коэффициента преобразования  $k^{'}(a)$  и  $\tau^{'}(\delta)$ 

#### Выводы

Увеличение коэффициента преобразования автотранспортного средства при управлении скоростью движения приводит к уменьшению динамических ошибок в канале управления скоростью движения. Увеличение постоянной времени дискретного апериодического звена в модели канала управления скоростью автотранспортного средства приводит к увеличению динамических ошибок. При увеличении интенсивности линейно изменяющегося задающего воздействия динамические ошибки в канале управления скоростью движения увеличиваются.

При случайных задающих и возмущающих воздействиях увеличение параметрической интенсивности этих воздействий приводит к увеличению дисперсий ошибок в канале управления скоростью движения. Увеличение коэффициента преобразования канала управления скоростью движения автотранспортного средства приводит к уменьшению дисперсии ошибки по задающему воздействию, увеличение постоянной времени дискретного апериодического звена - к уменьшению дисперсии динамической ошибки. Увеличение коэффициента преобразования k приводит к увеличению дисперсии ошибки по возмущающему воздействию, увеличение постоянной времени  $\tau$  ведет к уменьшению дисперсии ошибки по возмущающему воздействию.

# PARAMETRIC MODELING THE EFFECTIVENESS OF MOTOR VEHICLES ON SPEED CHANNEL

DIAB ABDULLAH S.A.O.

## **Abstract**

Parametrical modeling of management efficiency by the vehicle is considered. Models of operators-drivers with various degrees of motivational perception are given. The factorial analysis of errors of management is carried out.

# Список литературы

- $1.\ \Gamma$ анэ  $B.A.,\ Мацкевич\ A.H.,\ Цеховой\ A.E.\ Поведенческие модели и модели ситуационного анализа безопасности дорожного движения. Минск, 2002.$
- 2. Ганэ В.А., Соловьева С.В. Основы теории управления: теория систем и системного анализа. Минск, 2008
- 3.  $\Gamma$ анэ В.А., Дияб Абдаллах С.А.О. // Вестник Белорусского национального технического университета. 2010. №5. С. 40-43.