УДК 621.396.96

СОПОСТАВИТЕЛЬНЫЙ АНАЛИЗ АНСПЕНТНОГО И РАСШИРЕННОГО ФИЛЬТРОВ КАЛМАНА ПРИ ВТОРИЧНОЙ ОБРАБОТКЕ ИНФОРМАЦИИ В СПУТНИКОВЫХ РАДИОНАВИГАЦИОННЫХ СИСТЕМАХ

А.Н. МОРОЗ, П.А. ХМАРСКИЙ, С.А. ШАБАН, О.В. СИДОРОВИЧ

Военная академия Республики Беларусь Минск, 220057, Беларусь

Поступила в редакцию 19 ноября 2013

№ 4 (82)

Рассмотрены особенности построения расширенного и ансцентного фильтров Калмана при вторичной обработке информации в спутниковых радионавигационных системах. Для рассматриваемых алгоритмов фильтрации проведен сравнительный анализ качества навигационно-временных определений параметров траекторий воздушного объекта.

Ключевые слова: спутниковая радионавигационная система, сопровождение, фильтрация, расширенный фильтр Калмана, ансцентный фильтр Калмана.

Ввеление

Спутниковые радионавигационные системы (СРНС) стали неотъемлемой частью человеческой деятельности. Комплексная обработка информации, поступающей от приемника сигналов СРНС, позволяет определить основные навигационные параметры движущегося объекта с максимально возможной точностью. При этом точность зависит от качества навигационных измерителей (датчиков навигационной информации) и алгоритмов фильтрации навигационных сигналов [1, 2]. Наиболее распространенным таким алгоритмом является расширенный фильтр Калмана (РФК) [2-4]. Однако, как известно, РФК при решении нелинейных задач обладает ограниченными возможностями. Это объясняется использованием в РФК метода линеаризации, предполагающего замену нелинейных функции экстраполяции и пересчета на линейные в некоторой дельта-окрестности [4, 5]. Отсюда следует, что соответствующая точность РФК будет всегда ниже оптимальной. В этой связи возникает необходимость рассмотрения альтернативных алгоритмов фильтрации, позволяющих приблизиться к оптимальной оценке. Одним из таких алгоритмов является ансцентный фильтр Калмана (АФК) [6, 7]. Целями статьи являются: выявление особенностей построения АФК и РФК при фильтрации информации в СРНС; установление возможности повышение точности навигационно-временных определений подвижного объекта при использовании СРНС с АФК. по сравнению с РФК.

Постановка задачи

Начальные условия. В качестве системы координат (СК), в которой происходит функционирование источников координатно-временной информации, будем использовать геоцентрическую подвижную СК OXYZ [1]. Ее центр O совпадает с центром масс Земли, ось OZ направлена вдоль оси вращения Земли в сторону Северного полюса, ось ОХ лежит в плоскости экватора и проходит через Гринвичский меридиан, ОУ дополняет СК до правой. В отечественной литературе данная СК получила название ПЗ-90, а в зарубежной – WGS-84 [1]. В качестве воздушного носителя приемника сигналов CPHC рассматривается аэродинамический летательный аппарат (ЛА), летящий с постоянным ускорением. Будем считать, что одновременно имеются данные от 4 спутников (канала приемника сигналов СРНС). Наблюдения приемника СРНС можно представить в виде [1]:

2014

 $\mathbf{y}_{\mathrm{CPHC}i,k} = \begin{bmatrix} D_{i,k} + D'_{k} \\ V_{i,k} + V'_{k} \end{bmatrix} + \begin{bmatrix} n_{\mathrm{\Pi,\Pi,i,k}} \\ n_{\mathrm{\Pi,C}i,k} \end{bmatrix},$

где i – номер канала приемника сигналов СРНС (i = 1, ..., N);

 $D_{i,k} = \sqrt{(X_{i,k} - X_k)^2 + (Y_{i,k} - Y_k)^2 + (Z_{i,k} - Z_k)^2}$ – истинное значение дальности до спутника, соответствующее *i*-му каналу;

$$V_{i,k} = \frac{\left(X_{i,k} - X_{k}\right)\left(V_{xi,k} - V_{x,k}\right) + \left(Y_{i,k} - Y_{k}\right)\left(V_{yi,k} - V_{y,k}\right) + \left(Z_{i,k} - Z_{k}\right)\left(V_{zi,k} - V_{z,k}\right)}{\sqrt{\left(X_{i,k} - X_{k}\right)^{2} + \left(Y_{i,k} - Y_{k}\right)^{2} + \left(Z_{i,k} - Z_{k}\right)^{2}}} - \text{истинное значение}$$

радиальной скорости спутника относительно ЛА; D'_{k} – систематическая ошибка измерения дальности, вызванная рассогласованием часов спутника и ЛА; V'_{k} – систематическая ошибка скорости, вызванная уходом частоты задающего генератора в приемнике СРНС; k – номер шага измерения; $n_{\Pi Дi,k}$, $n_{\Pi Ci,k}$ – взаимно независимые дискретные белые гауссовские шумы (ДБГШ) с дисперсиями $\sigma_{\Pi Д}^{2}$ и $\sigma_{\Pi C}^{2}$ соответственно; $\left\{X_{k}, Y_{k}, Z_{k}, V_{x,k}, V_{y,k}, V_{z,k}\right\}$ – координаты и компоненты вектора скорости ЛА в СК ПЗ-90; $\left\{X_{i,k}, Y_{i,k}, Z_{i,k}, V_{xi,k}, V_{yi,k}, V_{zi,k}\right\}$ – эфемериды спутника, отслеживаемого *i*-м каналом в той же СК.

Оцениваемый вектор состояния в СК ПЗ-90 состоит из следующих параметров:

 $\lambda_k = \|X_k \quad Y_k \quad Z_k \quad D'_k \quad V_{x,k} \quad V_{y,k} \quad V_{z,k} \quad V'_k \quad A_{x,k} \quad A_{y,k} \quad A_{z,k}\|^{\mathrm{T}}$, где $A_{x,k}, A_{y,k}, A_{z,k}$ – компоненты вектора ускорения ЛА.

В качестве модели динамики ЛА будем использовать модель Зингера [1, 3]: $\mathbf{X}_{k} = \mathbf{X}_{k-1} + T_{d}\mathbf{V}_{k-1}, \ \mathbf{V}_{k} = \mathbf{V}_{k-1} + T_{d}\mathbf{A}_{k-1}, \ \mathbf{A}_{k} = \mathbf{A}_{k-1}e^{-\alpha T_{k}} + \sigma_{a}\sqrt{1 - e^{-2\alpha T_{k}}}\mathbf{n}_{a,k-1}, \ rde \ \mathbf{X}_{k} = \|X_{k} \quad Y_{k} \quad Z_{k}\|^{\mathrm{T}};$ $\mathbf{V}_{k} = \|V_{xk} \quad V_{y,k} \quad V_{z,k}\|^{\mathrm{T}}; \ \mathbf{A}_{k} = \|A_{xk} \quad A_{y,k} \quad A_{z,k}\|^{\mathrm{T}}; \ T_{d}$ – интервал дискретизации; σ_{a} – среднеквадратическое отклонение (СКО) случайного маневра ЛА; α – ширина спектра флуктуаций ускорения; $\mathbf{n}_{a,k-1}$ – вектор независимых ДБГШ с нулевыми математическими ожиданиями и единичными дисперсиями.

Модель ухода часов воздушного носителя примем равной [1]: $D'_{k} = D'_{k-1} + T_{d}V'_{k-1}$; $V'_{k} = V'_{k-1}e^{-\eta T_{k}} + \sigma_{V'}\sqrt{1 - e^{-2\eta T_{k}}}n_{V',k-1}$, где σ_{V} – СКО случайного ухода частоты задающего генератора, пересчитанное к радиальной скорости; η – ширина спектра флуктуаций частоты задающего генератора; $n_{V,k-1}$ – ДБГШ с нулевым математическим ожиданием и единичной дисперсией.

Вектор наблюдаемых параметров будет равен: $\mathbf{y}_{k} = \|\mathbf{y}_{\text{CPHC1},(k)}^{\text{T}} \quad \mathbf{y}_{\text{CPHC2},(k)}^{\text{T}} \quad \mathbf{y}_{\text{CPHC3},(k)}^{\text{T}} \quad \mathbf{y}_{\text{CPHC4},(k)}^{\text{T}} \|^{\text{T}}$. Вектор-функция наблюдения равна: $\mathbf{S}(\boldsymbol{\lambda}_{k}) = \|D_{1,k} + D'_{k}; V_{1,k} + V'_{k}; \cdots D_{4,k} + D'_{k}; V_{4,k} + V'_{k}\|^{\text{T}}$. Ошибки наблюдения наблюдения некоррелированные и характеризуются корреляционной матрицей ошибок измерения:

$$\mathbf{D}_{n} = \begin{bmatrix} \sigma_{\Pi \Pi}^{-1} & 0 & \cdots & 0 & 0 \\ 0 & \sigma_{\Pi \Pi}^{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_{\Pi \Pi 4}^{2} & 0 \\ 0 & 0 & \cdots & 0 & \sigma_{\Pi \Pi 4}^{2} \end{bmatrix}$$

Задачи: 1) рассмотреть особенности расчетов и построений РФК и АФК при вторичной обработке информации в СРНС; 2) методами математического моделирования провести сопоставление суммарных ошибок измерения координат и параметров движения ЛА для двух рассматриваемых алгоритмов фильтрации.

Алгоритм работы расширенного фильтра Калмана при вторичной обработке информации в спутниковых навигационных системах

Представим динамику изменения вектора состояния λ_k ЛА в дискретном виде [1–3]:

$$\boldsymbol{\lambda}_{k} = \mathbf{F}_{k-1}\boldsymbol{\lambda}_{k-1} + \mathbf{G}_{k-1}\boldsymbol{\omega}_{k-1},$$

где λ_k – вектор состояния; \mathbf{F}_{k-1} – неслучайная динамическая матрица пересчета приращения вектора состояния; \mathbf{G}_{k-1} – матрица спектральных плотностей порождающего шума; $\boldsymbol{\omega}_{k-1}$ – порождающий векторный белый шум с матрицей дисперсий \mathbf{D}_{ω} .

Следуя [1], введем вектор $\mathbf{v}_{k} = \|\mathbf{X}_{k}^{T} \quad D' \quad \mathbf{V}_{k}^{T} \quad V'\|^{T}$, от компонентов которого явно зависит сигнальная функция $\mathbf{S}(\boldsymbol{\lambda}_{k})$. Данный вектор связан с вектором состояния $\boldsymbol{\lambda}_{k}$ соотношением $\mathbf{v}_{k} = \mathbf{c}\boldsymbol{\lambda}_{k}$. Матрица с будет иметь размерность 8×11 с единичными элементами на главной диагонали, а все остальные элементы будут нулевыми.

Уравнения расширенного фильтра Калмана [2-4]:

$$\hat{\boldsymbol{\lambda}}_{k} = \tilde{\boldsymbol{\lambda}}_{k} + \mathbf{D}_{\lambda,k} \mathbf{c}^{\mathrm{T}} \left(\frac{\partial \mathbf{S}_{k}(\tilde{\mathbf{v}}_{k})}{\partial \mathbf{v}} \right)^{\mathrm{T}} \mathbf{D}_{n}^{-1} \left(\mathbf{y}_{k} - \mathbf{S}_{k} \left(\tilde{\mathbf{v}}_{k} \right) \right), \quad \tilde{\boldsymbol{\lambda}}_{k} = \mathbf{F}_{k-1} \boldsymbol{\lambda}_{k-1}, \quad \tilde{\mathbf{D}}_{\lambda,k} = \mathbf{F}_{k-1} \mathbf{D}_{\lambda,k-1} \mathbf{F}_{k-1}^{\mathrm{T}} + \mathbf{M}_{k-1}, \\ \mathbf{D}_{\lambda,k}^{-1} = \tilde{\mathbf{D}}_{\lambda,k}^{-1} + \left(\frac{\partial \mathbf{S}_{k} \left(\mathbf{c} \tilde{\boldsymbol{\lambda}}_{k} \right)}{\partial \boldsymbol{\lambda}} \right)^{\mathrm{T}} \mathbf{D}_{n}^{-1} \frac{\partial \mathbf{S}_{k} \left(\mathbf{c} \tilde{\boldsymbol{\lambda}}_{k} \right)}{\partial \boldsymbol{\lambda}},$$

где $\hat{\lambda}_k$ – фильтрованный вектор состояния; $\tilde{\lambda}_k$ – экстраполированный вектор состояния; $\mathbf{D}_{\lambda,k}$ – корреляционная матрица (КМ) ошибок фильтрации; $\tilde{\mathbf{D}}_{\lambda,k}$ – КМ ошибок экстраполяции; $\mathbf{M}_{k-1} = \mathbf{G}_{k-1} \mathbf{D}_{\omega,k-1} \mathbf{G}_{k-1}^{\mathrm{T}}$ – КМ случайного дискретного маневра.

Особенностями рассматриваемой модификации РФК будут являться:

1) неслучайная динамическая матрица пересчета приращения вектора состояния:

	1	0	0	0	T_d	0	0	0	$T_d^2/2$	0	0	
	0	1	0	0	0	T_d	0	0	0	$T_d^2/2$	0	
	0	0	1	0	0	0	T_d	0	0	0	$T_d^2/2$	
	0	0	0	1	0	0	0	T_d	0	0	0	
$F_{k-1} =$	0	0	0	0	1	0	0	0	T_d	0	0	,
	0	0	0	0	0	1	0	0	0	T_d	0	
	0	0	0	0	0	0	1	0	0	0	T_d	
	0	0	0	0	0	0	0	$\exp(-\eta T_d)$	0	0	0	
	0	0	0	0	0	0	0	0	$\exp(-\alpha T_d)$	0	0	
	0	0	0	0	0	0	0	0	0	$\exp(-\alpha T_d)$	0	
	0	0	0	0	0	0	0	0	0	0	$\exp(-\alpha T_d)$	

2) КМ случайного дискретного маневра:

$$\mathbf{M}_{k-1} = \begin{vmatrix} m_{11} & 0 & 0 & 0 & m_{12} & 0 & 0 & 0 & m_{13} & 0 & 0 \\ 0 & m_{11} & 0 & 0 & 0 & m_{12} & 0 & 0 & 0 & m_{13} & 0 \\ 0 & 0 & m_{11} & 0 & 0 & 0 & m_{12} & 0 & 0 & 0 & m_{13} \\ 0 & 0 & 0 & m_{11} & 0 & 0 & 0 & m_{12} & 0 & 0 & 0 \\ m_{12} & 0 & 0 & 0 & m_{22} & 0 & 0 & 0 & m_{23} & 0 & 0 \\ 0 & m_{12} & 0 & 0 & 0 & m_{22} & 0 & 0 & 0 & m_{23} \\ 0 & 0 & m_{12} & 0 & 0 & 0 & m_{22} & 0 & 0 & 0 & m_{23} \\ 0 & 0 & 0 & m_{12} & 0 & 0 & 0 & m_{22} & 0 & 0 & 0 & m_{33} \\ 0 & 0 & 0 & m_{12} & 0 & 0 & 0 & m_{23} & 0 & 0 & 0 & m_{33} \\ 0 & 0 & m_{13} & 0 & 0 & 0 & m_{23} & 0 & 0 & 0 & m_{33} & 0 \\ 0 & 0 & m_{13} & 0 & 0 & 0 & m_{23} & 0 & 0 & 0 & m_{33} \\ 0 & 0 & m_{13} & 0 & 0 & 0 & m_{23} & 0 & 0 & 0 & m_{33} \\ m_{12} = \frac{\left(1 - \exp(-2\alpha T_d) + 2\alpha T_d + \frac{2\alpha^2 T_d^2}{3} - 2\alpha^2 T_d^2 - 4\alpha T_d \exp(-\alpha T_d)\right)\sigma_a^2}{2\alpha^3}; \\ m_{12} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d) + 2\alpha T_d \exp(-\alpha T_d)\right)\sigma_a^2}{2\alpha^3}; \\ m_{23} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\alpha^3}; \\ m_{23} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\alpha^3}; \\ m_{23} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\alpha^3}; \\ m_{11} = \frac{\left(-3 + 4\exp(-\alpha T_d) - \exp(-2\alpha T_d)\right)\sigma_a^2}{2\alpha^3}; \\ m_{11} = \frac{\left(-3 + 4\exp(-\alpha T_d) - \exp(-2\alpha T_d)\right)\sigma_a^2}{2\alpha^3}; \\ m_{12} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\alpha^3}; \\ m_{12} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\eta^3}; \\ m_{22} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\eta^3}; \\ m_{23} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\eta^3}; \\ m_{24} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\eta^2}; \\ m_{25} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\eta^2}; \\ m_{26} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\eta^2}; \\ m_{27} = \frac{\left(1 - \exp(-2\alpha T_d) - 2\exp(-\alpha T_d)\right)\sigma_a^2}{2\eta^2}; \\ m_{27} = \frac{\left(1 - \exp(-2\alpha T_d\right)\right)\sigma_a^2}{2\eta^2}; \\ m_{27} = \frac{\left(1 - \exp($$

Алгоритм работы ансцентного фильтра Калмана при вторичной обработке информации в спутниковых навигационных системах

Алгоритм работы АФК для удобства практической реализации разбивают на два основных этапа [6, 7] – этап экстраполяции, этап фильтрации.

Этап экстраполяции. Формируется набор 2n+1 сигма-точек (n – размерность вектора состояния) из фильтрованного вектора состояния $\hat{\lambda}_k$ и матрицы ошибок фильтрации $\mathbf{D}_{\lambda,k}$ на предыдущем наблюдении ((k-1)-м шаге):

$$\mathbf{A}_{k-1}^{0} = \hat{\boldsymbol{\lambda}}_{k-1}; \ \mathbf{A}_{k-1}^{i} = \hat{\boldsymbol{\lambda}}_{k-1} + \left(\sqrt{(n+\kappa)\mathbf{D}_{\boldsymbol{\lambda},k-1}}\right)_{i}, i = 1...n; \ \mathbf{A}_{k-1}^{i} = \hat{\boldsymbol{\lambda}}_{k-1} - \left(\sqrt{(n+\kappa)\mathbf{D}_{\boldsymbol{\lambda},k-1}}\right)_{i}, i = n+1,...,2n,$$
где $\left(\sqrt{(n+\kappa)\mathbf{D}_{\boldsymbol{\lambda},k-1}}\right)_{i} - i$ -й столбец (или строка) взвешенной матрицы $\sqrt{(n+\kappa)\mathbf{D}_{\boldsymbol{\lambda},k-1}}$;

 κ – масштабируемый коэффициент, выбираемый из эвристического правила: $\kappa + n = 3.$

При нахождении корня квадратного из КМ ошибок фильтрации используют устойчивые и эффективные методы, наиболее распространенным из них является метод Холецкого [6].

Далее каждая точка экстраполируется при помощи выражения: $\mathbf{A}_{k}^{i} = \mathbf{F}_{k-1} \mathbf{A}_{k-1}^{i}$, i = 0...2n. По экстраполированным точкам определяются параметры экстраполированной плотности вероятности – $\tilde{\boldsymbol{\lambda}}_{k}$ и $\tilde{\mathbf{D}}_{\boldsymbol{\lambda},k}$:

$$\tilde{\boldsymbol{\lambda}}_{k} = \sum_{i=0}^{2n} W_{i} \mathbf{A}_{k}^{i}, \quad \tilde{\mathbf{D}}_{\lambda,k} = \sum_{i=0}^{2n} W_{i} (\mathbf{A}_{k+1}^{i} - \tilde{\boldsymbol{\lambda}}_{k}) (\mathbf{A}_{k+1}^{i} - \tilde{\boldsymbol{\lambda}}_{k})^{\mathrm{T}} + \mathbf{G} \mathbf{D}_{\omega} \mathbf{G}^{\mathrm{T}}, \quad W_{0} = \frac{\kappa}{n+\kappa}, \quad W_{i} = \frac{1}{2(n+\kappa)}$$

Этап фильтрации. Полученные сигма-точки преобразуются с помощью векторфункции наблюдения $\mathbf{S}_k(\bullet)$: $\mathbf{\Theta}_k^i = \mathbf{S}_k(\mathbf{A}_k^i)$, $i = 0 \dots 2n$. По совокупности полученных точек определяются параметры преобразованной плотности вероятности – математическое ожидание (MO) $\tilde{\mathbf{y}}_k$, KM $\mathbf{D}_{\mathbf{y}_k,k}$ и $\mathbf{D}_{\lambda \mathbf{y}_k,k}$:

$$\tilde{\mathbf{y}}_{k} = \sum_{i=0}^{2n} W_{i} \boldsymbol{\Theta}_{k}^{i}, \ \mathbf{D}_{yy,k} = \sum_{i=0}^{2n} W_{i} (\boldsymbol{\Theta}_{k}^{i} - \tilde{\mathbf{y}}_{k}) (\boldsymbol{\Theta}_{k}^{i} - \tilde{\mathbf{y}}_{k})^{\mathrm{T}},$$
$$\mathbf{D}_{\lambda y,k} = \sum_{i=0}^{2n} W_{i} (\mathbf{A}_{k}^{i} - \tilde{\boldsymbol{\lambda}}_{k}) (\boldsymbol{\Theta}_{k}^{i} - \tilde{\mathbf{y}}_{k})^{\mathrm{T}}, \ W_{0} = \frac{\kappa}{n+\kappa}, \ W_{i} = \frac{1}{2(n+\kappa)}$$

Матрица коэффициентов фильтрации \mathbf{K}_k , МО фильтрованного вектора состояния $\hat{\boldsymbol{\lambda}}_k$ и КМ ошибок фильтрации $\mathbf{D}_{\lambda,k}$ на *k*-м шаге будут равны:

$$\mathbf{K}_{k} = \mathbf{D}_{\lambda y(k)} (\mathbf{D}_{yy(k)} + \mathbf{D}_{n})^{-1}, \ \hat{\boldsymbol{\lambda}}_{k} = \tilde{\boldsymbol{\lambda}}_{k} + \mathbf{K}_{k} (\mathbf{y}_{k} - \tilde{\mathbf{y}}_{k}), \ \mathbf{D}_{\lambda,k} = \tilde{\mathbf{D}}_{\lambda,k} - \mathbf{K}_{k} (\mathbf{D}_{yy,k} + \mathbf{D}_{n}) \mathbf{K}_{k}^{\mathrm{T}}$$

Отсутствие необходимости вычисления частных производных от нелинейной функции $S(\lambda_k)$ приводит к тому, что АФК проще в отладке и реализации чем РФК. Вычислительные затраты при этом РФК и АФК сопоставимы [6].

Результаты математического моделирования

Для установления возможности повышения точности навигационно-временных определений подвижного объекта при использовании СРНС с АФК, по сравнению с РФК было проведено математическое моделирование.

Задающее воздействие было представлено в виде сочетания детермированной полиномиальной модели (регулярной составляющей) 2-го порядка и случайной составляющей в виде коррелированного гауссовского шума. Траектория движения спутников описывалась уравнениями невозмущенного траекторного движения [4]. Параметры моделирования представлены в таблице.

Характеристика образца			
Интервал дискретизации T_d , с			
Число спутников, используемых для решения навигационной задачи			
Средний квадрат ошибки измерения псевдодальности $\sigma_{\Pi Д,i}$, м			
Средний квадрат ошибки измерения псевдоскорости $\sigma_{\Pi C,i}$, м/с			
Средний квадрат ухода частоты задающего генератора, пересчитанный в радиальную скорость $\sigma_{V'}$, м/с			
Ширина спектра флуктуаций ускорения <i>α</i> , с ⁻¹			
Ширина спектра флуктуаций частоты задающего генератора η , с ⁻¹			
Начальная скорость ЛА V, м/с			
Ускорение ЛА А, м/с ²			

П	lараметры	моделирования
---	-----------	---------------

В качестве показателей точности использовалось значение сферической ошибки измерения местоположения: $\varepsilon_{c\phi,k} = \sqrt{(X_k - \hat{X}_k)^2 + (Y_k - \hat{Y}_k)^2 + (Z_k - \hat{Z}_k)^2}$, где $\{\hat{X}_k, \hat{Y}_k, \hat{Z}_k\}$ – фильтрованные значения компонент вектора состояния.

Сравнительный анализ АФК и РФК проводился методом статистических испытаний. Для определения математического ожидания и СКО сферической ошибки измерения

местоположения $\hat{m}_{c\phi}$, $\hat{D}_{c\phi}$ использовались формулы: $\hat{m}_{c\phi}(k) = \frac{\sum_{i=1}^{N} \varepsilon_{c\phi k, i}}{N};$

 $\hat{\sigma}_{c\phi}(k) = \sqrt{\frac{1}{N-1} \left(\sum_{i=1}^{N} \left(\varepsilon_{c\phi k,i} - \hat{m}_{c\phi k,i} \right)^2 \right)},$ где *N* – количество опытов; $\varepsilon_{c\phi k,i}$ – значения сферической

ошибки для фиксированных моментов времени k.

В ходе моделирования проведено 10000 опытов. Полученные в ходе модельных экспериментов значения СКО сферических ошибок измерения местоположения ЛА $\hat{\sigma}_{c\phi}$ изображены на рисунке.

Анализ данных рисунка показывает, что использование АФК не позволяет достичь значительного выигрыша в точности по сравнению с РФК. Отсутствие выигрыша объясняется тем, что ошибки аппроксимации метода линеаризации, лежащего в основе РФК, несущественны.

Результаты сопоставительного моделирования.

Заключение

В статье рассмотрены особенности построения РФК и АФК при вторичной обработке информации в СРНС.

В результате анализа результатов моделирования установлено:

1. Использование АФК для решения задач фильтрации в СРНС является целесообразным.

2. Для заданных условий моделирования использование АФК не позволило значительно повысить точность измерения по сравнению с РФК. Это объясняется тем, что ошибки аппроксимации метода линеаризации, лежащего в основе РФК, несущественны.

3. При сопоставимых вычислительных затратах АФК проще в отладке и реализации чем РФК.

THE COMPARATIVE ANALYSIS OF UNSCENTED AND EXTENDED KALMAN FILTERS FOR GLOBAL POSITIONING SYSTEMS RECEIVER DATA PROCESSING

A.N. MOROZ, P.A. KHMARSKI, S.A. SHABAN, O.V. SIDOROVICH

Abstract

The features of extended and unscented Kalman filters for global positioning systems receiver data processing are considered. The estimation performance of extended and unscented Kalman filters is compared.

Список литературы

- 1. Бакитько Р.В., Болденков Е.И., Булавский Н.Т. и др. ГЛОНАСС. Принципы построения и функционирования. Издание 4-ое, перераб. и доп. / Под общ. ред. А.И. Перова и В.Н. Харисова М., 2005.
- 2. *Степанов О.А.* Основы теории оценивания с приложениями к задачам обработки навигационной информации. Часть 1. Введение в теорию оценивания. СПб, 2009.
- 3. *Бар-Шалом Я., Ли Х.Р.* Траекторная обработка. Принципы, способы и алгоритмы: в 2 ч. Пер. с англ. М., 2011.
- 4. Перов А. И. Статистическая теория радиотехнических систем. М., 2003.
- 5. Хмарский П.А., Солонар А.С. // Докл. БГУИР. 2012. № 7. С 47–53.
- 6. Julier S., Uhlmann J. // IEEE Trans. on Automatic Control. 2000. Vol. 45. №3. P. 477–482.
- 7. Хмарский П.А., Солонар А.С. // Докл. БГУИР. 2013. № 2. С. 79–86.