2016 № 7(101)

УДК 535.36:53.082.53

АППАРАТУРА ДЛЯ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК ИЗЛУЧЕНИЯ, РАССЕЯННОГО БИОЛОГИЧЕСКИМИ СРЕДАМИ

А.П. ИВАНОВ, В.В. БАРУН, В.П. ДИК

Институт физики им. Б. И. Степанова Национальной академии наук Беларуси пр. Независимости,68, Минск, 220072, Беларусь

Поступила в редакцию 9 ноября 2016

Создан укомплектованный по модульному принципу комплекс приборов, позволяющий измерять спектральные коэффициенты отражения и индикатрисы кожи, коэффициенты направленного и диффузного пропускания света гуморальными средами.

Ключевые слова: свет, рассеяние, биологическая ткань, гуморальная жидкость, спектр, коэффициент диффузного отражения.

Введение

Спектральные методы прочно вошли в практику определения компонентного состава, структурных и оптических характеристик различных сред. Однако применение этих методов для неинвазивной диагностики биологических тканей не столь широко. Одна из причин этого связана с отсутствием промышленно выпускаемых технических средств, предназначенных для измерения характеристик света, рассеянного биотканями в условиях *in vivo*. Цель данной работы — разработка компактной и легко транспортируемой системы, сочетающей удобство измерения в условиях *in vivo* различных спектральных характеристик рассеянного света, обеспечение возможности комплексного изучения режимов однократно и многократно рассеянного излучения биотканей и гуморальных сред, получение экспериментальных результатов в абсолютных единицах, позволяющих воспользоваться аналитическими методиками решения обратной задачи по восстановлению структурных и биофизических параметров среды.

Структура измерительной системы

Прибор укомплектован по модульному принципу. Это обеспечивает гибкость системы в эксплуатации, возможность ее простой сборки и разборки, малые габариты. В качестве базовой комплектации использованы отдельные блоки, выпускаемые фирмой Ocean Optics. Для каждого варианта режима работы общими модулями являются источник света на базе галогенной лампы HL-2000-LL, спектрометр USB4000-VIS-NIR (приемник излучения) и персональный компьютер. Кроме того, система включает ряд общих вспомогательных блоков и приспособлений, среди которых — программное обеспечение SPECTRASUITE, приемное и передающее волокна оптического типа QP400-2-VIS-BX, коллиматор типа 74-ACR, эталон оптический типа WS-1. При измерении различных характеристик рассеянного света дополнительно используются взаимозаменяемые модули, часть которых произведена OceanOptics, а другая разработана и изготовлена в Институте физики НАН Беларуси.

На рис. 1 представлена структурная схема системы в режиме измерения спектральных коэффициентов диффузного отражения. Свет от источника И поступает в оптоволоконный кабель OBK_1 и выходит из него в виде расходящегося пучка с полным углом расходимости порядка 25° . Коллиматор К формирует параллельный пучок диаметром примерно 3 мм. При необходимости устанавливается интерференционный фильтр $И\Phi$, который выбирает требуемую длину волны излучения. Далее свет поступает в интегрирующую сферу ИС (фотометрический шар) типа ISP-80-8-R, в измерительном порте которой вначале помещается

2016 № 7 (101)

калибровочный оптический эталон, а затем образец биоткани или гуморальной жидкости. Оптический эталон во всем спектральном диапазоне 360–1000 нм имеет сертифицированный коэффициент отражения, близкий к 1. Отраженное объектами излучение по оптоволоконному кабелю ОВК2 поступает в фотоприемник ФП, который измеряет спектр оптического сигнала (360–1000 нм), и, после калибровки, коэффициент диффузного отражения света от биоткани, передаваемый в компьютер. Тип регистратора спектрометра – ПЗС-линейка. Программное обеспечение служит для представления экспериментальных данных в совместимом с компьютером виде и формате. От ФП измеренный спектр подается в порт USB персонального компьютера ПК, где производится его окончательная обработка. Скорость передачи данных – каждые 5 мс через USB порт (обеспечивается программным путем). Операционной системой является Windows 98/2000/XP.

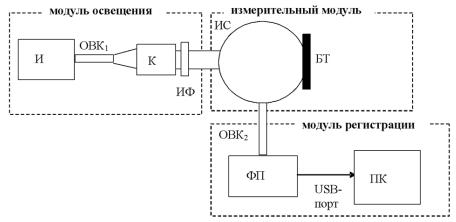


Рис. 1. Структурная схема прибора: И – источник света; OBK_1 – передающий оптоволоконный кабель; К – коллиматор; $И\Phi$ – интерференционный фильтр; UC – интегрирующая сфера; ET – образец биоткани или гуморальной жидкости; ET – приемный оптоволоконный кабель; ET – фоторегистрирующее устройство; ET – персональный компьютер

Система может работать в следующих режимах измерений.

- 1. Коэффициенты диффузного отражения биообъектов, например, кожи (рис. 2, a) или пробы гуморальной жидкости с использованием ИС (рис. 2, δ). В первом случае к приемной апертуре интегрирующей сферы приставляется исследуемый образец. Во втором кюветная камера с гуморальной жидкостью. Кювету с пробой устанавливают в посадочные места камеры.
- 2. Коэффициенты диффузного пропускания пробы жидкости с использованием ИС и кюветной камеры для измерения многократно рассеянного света (рис. $2, \delta$).
- 3. Коэффициенты направленного пропускания (показатели ослабления) пробы жидкости в кювете для измерения интенсивности прямо прошедшего света (рис. 2, δ)
- 4. Индикатрисы отражения света биообъектами с использованием гониометра (рис. 2, δ). Гониометр своей приемной апертурой устанавливается на исследуемый образец. Освещение образца осуществляется по нормали к поверхности, а прием излучения под некоторым углом. Этот угол может варьироваться в пределах $15-75^{\circ}$ относительно нормали к поверхности.

Измерение коэффициентов диффузного пропускания проб гуморальной жидкости осуществляется аналогично, но кюветную камеру с пробами устанавливают на входе ИС. Пучок белого света от источника через передающее волокно и коллиматор поступает в кювету и рассеивается исследуемой жидкостью. Возникший диффузный свет поступает в ИС, а от нее через второй коллиматор и приемное волокно — на приемник спектрометр. Спектрометр регистрирует спектр рассеянного излучения и, после калибровки, коэффициенты диффузного пропускания света гуморальной жидкостью. При измерении пропускания прямого света в условиях *in vitro* (для проб гуморальных сред или тонких срезов биоткани) пучок белого света от источника через передающее волокно и коллиматор поступает в кюветную камеру, проходит кювету с исследуемой жидкостью и через второй коллиматор поступает в приемное

2016 № 7 (101)

волокно и далее на спектрометр. Последний регистрирует спектральную интенсивность ослабленного жидкостью излучения и, после калибровки относительно эталонной кюветы, передает значения коэффициента пропускания на различных длинах волн в компьютер. Два указанных коллиматора служат для задания требуемой расходимости облучающего и регистрируемого света, что позволяет повысить точность измерения коэффициента пропускания.

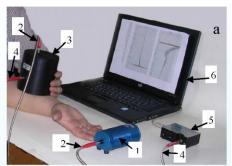


Рис. 2. Комплекс для измерения спектральных характеристик рассеянного света от кожи человека или гуморальной жидкости: a – измерение коэффициента диффузного отражения от кожи: 1 – источник света. 2 – OBK₁, 3 – ИС, 4 – OBK₂, 5 – ФП, 6 – ПК; δ – комплект приставок: 1 – кюветная камера для измерения коэффициента направленного пропускания света гуморальной жидкостью, 2 – кюветная камера для измерения коэффициентов диффузного отражения и пропускания гуморальной жидкости, 3 – ИС, 4 – блок измерения индикатрисы отражения биообъекта

При измерениях индикатрис отражения биообъектов используется указанная ранее комплектующая техника (без интегрирующей сферы и кюветных камер) Для получения экспериментальных данных в абсолютных единицах применяется оптический эталон.

Оценка погрешностей измерителя коэффициентов отражения

Исследованы разные причины, приводящие к погрешностям измеряемого коэффициента отражения.

Шумы системы регистрации. Выбраны оптимальные условия: усредненный спектральный интервал 10 нм, что соответствует усреднению по 25 пикселам ПЗС-линейки; измерения при времени накопления не более 4 с и четырех реализациях. При этом в интервале 0.4–1 мкм погрешности, определяемые шумами, не более 1 %.

Влияние люминесценции и рассеяния света в спектрометре отсутствует. Перепад между поверхностью интегрирующей сферы и биообъектом может уменьшить отражение на 1–3 %.

Учет фонового светового потока, попадающего на стенки фотометрического шара. Его доля по спектру изменяется от от 0,017 до 0,03.

Влияние размытия осветительного пятна в объеме биоткани. Вследствие размытия света в боковых на-правлениях за пределы приемной апертуры необходимо при длинах волн 600, 700, 800 нм измеряемый коэффициент отражения умножать на 1,01, 1,07, 1,1.

Заключение

Созданный комплекс позволяет осуществлять неинвазивную (неразрушающую) диагностику концентрации капилляров и степени оксигенации крови в дерме, концентрации меланина и толщины эпидермиса, а также определение степени оксигенации, гемоглобинного состава, размеров и степени агрегации эритроцитов в пробах крови [1]; выявлять ряд патологий приповерхностных участков кожи и проб крови по отклонению измеренных структурных и биофизических параметров ткани и крови от нормальных значений [2]; оценивать глубины проникновения света в ткань при светотерапии, включая лазерную; оценивать температурный режим. биоткани при лазерной гипертермии или криотермии поверхности кожи [3]. Прибор укомплектован по модульному принципу; его вес 7–8 кг (в зависимости от комплектации);

2016 № 7 (101)

имеет программное обеспечение и связь с портом USB персонального компьютера для передачи оцифрованных данных и их обработки.

SPECTROPHOTOMETRIC EQUIPMENT COMPLEX FOR MEASURING LIGHT CHARACTERISTICS SCATTERED BY BIOLOGICAL TISSUES AND HUMORAL MEDIA

A.P. IVANOV, V.V. BARUN, V.P. DICK

Abstract

An equipment complex having a modular construction is designed to measure spectral reflectances and angular patterns of scattered light from skin, spectral direct and diffuse transmittance coefficients of humoral media.

Keywords: light, scattering, biological tissue, humoral liquid, spectrum, diffuse reflectance coefficient.

Список литературы

- 1. Барун В.В., Иванов А.П., Кватернюк С.М., Петрук В.Г. Способ определения степени агрегации эритроцитов / Заявка на патент РБ на изобретение № а20100492.
- 2. Барун В.В., Иванов А.П., Волотовская А.В. и др. // Журн. прикл. спектр. 2007. № 74 (387).
- 3. *Кулешова Д.В., Лощенов В.Б., Шевчик С.А. и др. //* Мат. VI Межд. конф. «Лазерная физ. и оптич. технологии». Ч. 2. Гродно. 2006. С. 184.

УДК 612.15, 616.5, 57.087

ДИАГНОСТИКА МИКРОЦИРКУЛЯЦИИ ПОВЕРХНОСТНЫХ БИОТКАНЕЙ ПРИ АРТРИТЕ НА ОСНОВЕ МЕТОДА ДИНАМИЧЕСКОГО ИЗМЕРЕНИЯ БИОСПЕКЛОВ

С.К. ДИК, Т.В. ГОРДЕЙЧУК,Д.А. ЗАВАЦКИЙ, Т.Б. МЕЛИК-КАСУМОВ*, Т.О. ПАВЛЮТЬ*, Н.И. СЧАСТНАЯ*, Е.Н. РУНКЕВИЧ, И.В. КИШКЕВИЧ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

ГНУ «Институт физиологии НАН Беларуси» Академическая 28, Минск, 220013, Беларусь

Поступила в редакцию 11 ноября 2016

Приведены результаты исследования микроциркуляции в поверхностных сосудах кожи в области правой задней конечности лабораторных крыс до и после моделирования артрита на основе метода динамического измерения биоспеклов. Исследования выполнены с использованием разработанного авторами аппаратного и программного обеспечения динамического измерения биоспеклов. Установлено, что метод динамического измерения и цифровой обработки биоспеклов кожи позволяет выявить первичные изменения в микроциркуляции, происходящие на начальной стадии развития артрита, а также отслеживать дальнейшие изменения, происходящие в процессе развития заболевания. Результаты анализа спекл-изображений согласуются с общей клинической картиной течения заболевания.

Ключевые слова: биоспеклы, спекл-иследования, спекл-изображение, микроциркуляция, артрит.