

http://dx.doi.org/10.35596/1729-7648-2025-23-5-20-26

УДК 621.373.826

ЛАЗЕРНО-АКТИВИРОВАННЫЕ ФОТОХИМИЧЕСКИЕ ПРОЦЕССЫ ФОРМИРОВАНИЯ ТОНКОПЛЕНОЧНЫХ СИСТЕМ МИКРОЭЛЕКТРОНИКИ

А. Н. КУПО

Гомельский государственный университет имени Франциска Скорины (Гомель, Республика Беларусь)

Аннотация. Представлены результаты исследования лазерно-активированных процессов электрохимического осаждения функциональных тонкопленочных субмикронных токопроводящих структур с использованием цианистых электролитов. Исследовано воздействие на цианистые электролиты лазерного излучения с длинами волн $\lambda = 600-200$ нм, которое приводит к активной диссоциации соединений видов K_i Me(CN) $_j$, Me $_i$ (CN) $_j$, K_i Me $_i$ (CN) $_j$. Это способствует локальному росту градиента концентрации активных электрохимических частиц и обуславливает увеличение локальной скорости электрохимического осаждения в целом. Проанализировано влияние на указанные процессы таких параметров, как интенсивность лазерного излучения, коэффициент поглощения лазерного излучения электролитом (эффективное сечение поглощения) и квантовый выход диссоциации, которые определяются составом электролита и селективностью лазерного воздействия.

Ключевые слова: лазерные фотохимические процессы, цианистые электролиты, лазерно-активированное электрохимическое осаждение.

Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

Для цитирования. Купо, А. Н. Лазерно-активированные фотохимические процессы формирования тонкопленочных систем микроэлектроники / А. Н. Купо // Доклады БГУИР. 2025. Т. 23, № 5. С. 20–26. http://dx.doi.org/10.35596/1729-7648-2025-23-5-20-26.

LASER-ACTIVATED PHOTOCHEMICAL PROCESSES OF FORMATION OF THIN-FILM SYSTEMS OF MICROELECTRONICS

ALIAKSANDR KUPO

Francisk Skorina Gomel State University (Gomel, Republic of Belarus)

Abstract. The article presents the results of a study of laser-assisted electrochemical deposition of functional thinfilm submicron conductive structures using cyanide electrolytes. The effect of laser radiation with wavelengths of $\lambda = 600-200$ nm on cyanide electrolytes was investigated. This radiation leads to the active dissociation of compounds of the $K_i Me(CN)_j$, $Me_i(CN)_j$, and $K_i Me_i(CN)_j$ types. This promotes a local increase in the concentration gradient of active electrochemical species and causes an increase in the local rate of electrochemical deposition as a whole. The influence of such parameters as laser radiation intensity, the absorption coefficient of laser radiation by the electrolyte (effective absorption cross-section), and the dissociation quantum yield, which are determined by the composition of the electrolyte and the selectivity of the laser irradiation, on these processes was analyzed.

Keywords: laser photochemical processes, cyanide electrolytes, laser-activated electrochemical deposition.

Conflict of interests. The author declares no conflict of interests.

For citation. Kupo A. (2025) Laser-Activated Photochemical Processes of Formation of Thin-Film Systems of Microelectronics. *Doklady BGUIR*. 23 (5), 20–26. http://dx.doi.org/10.35596/1729-7648-2025-23-5-20-26 (in Russian).

Введение

Важным перспективным направлением является исследование влияния лазерного излучения на осаждение металлических тонкопленочных покрытий. При фотохимическом воздействии лазерного излучения происходит диссоциация металлсодержащих соединений в промышленных электролитах, в результате чего высвобождающиеся ионы металлов формируют токопроводящую субмикронную стереоструктуру.

Метод лазерной активации электролиза обладает рядом неоспоримых преимуществ в сравнении с другими способами гальванического осаждения. Во-первых, значительно (до 5-ти раз) [1] увеличивается скорость формирования топологического рисунка. Во-вторых, применение лазерного излучения обусловливает селективность процесса в целом. Кроме того, варьирование параметрами лазерного излучения в выбранном диапазоне позволяет формировать разнообразные поверхностные субмикронные структуры различного функционального назначения благодаря возможности управления такими свойствами покрытий, как микротвердость, износостойкость и электропроводность.

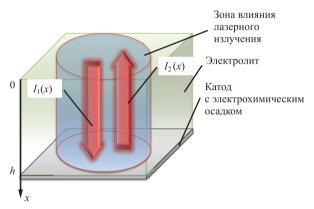
Варьирование длины волны (частоты) лазерного излучения в процессе формирования специальных покрытий методом гальваностегии приводит не только к предсказуемому возрастанию скорости самого процесса электролиза, но и к качественным преобразованиям в составе электролита. Например, воздействие лазерного излучения инфракрасного диапазона обусловливает термохимический механизм активации процесса электролиза. Между тем излучение оптического и ультрафиолетового диапазонов инициирует протекание фотохимических реакций на границе раздела фаз электролит—подложка [2—4]. Варьируя интенсивностью лазерного излучения в указанных диапазонах, можно инициировать возбуждение высших электронных уровней и даже ионизацию молекул в результате многофотонного поглощения.

Подавляющее большинство работ, посвященных данной теме, содержат результаты исследований термического механизма активирования электрохимии, в то время как фотохимический механизм практически не изучен. Цель исследований автора – разработка аналитической модели фотохимических процессов, активированных лазерным излучением оптического и ультрафиолетового диапазонов, при формировании тонкопленочных металлических субмикронных структур.

Физико-химические процессы в электролитах, активированные лазерным излучением

Термодинамический подход позволяет представлять электролитическую ячейку как гетерофазную открытую систему — электролит, приэлектродный слой ионного насыщения и модифицируемая поверхность тонкопленочного покрытия металлизации. В электролите при наложении электрического смещения (разности потенциалов электродов) происходит вынужденная диффузия анионов и катионов. Как известно, градиент концентрации и коэффициент диффузии в конечном итоге определяют скорость миграции ионов металла [3]. При поглощении импульса лазерного излучения в указанной системе происходят электронное возбуждение, фотоионизация и фотодиссоциация молекул и ионов электролита. В результате возникает термодинамически неравновесная концентрация высокоактивных ионов, и в реагирующей системе создаются специфические условия, что порождает энергетические превращения, не обусловленные тепловой формой движения.

Наиболее характерными примерами электролитов, в которых восстанавливаемая форма представляет собой комплексные ионы, являются растворы цианистых солей никеля, меди, серебра, золота, цинка и других металлов [3]. Скорость осаждения указанных металлов зависит от выхода по току.


Лазерный механизм фотохимического воздействия на такую гетерогенную систему реализуется при разрыве координационной связи между ионами металла и одним из лигандов, что является следствием возбуждения комплекса и образования радикальной пары с малым временем жизни. Образовавшийся радикал может вновь окислить восстановленную форму металла-комплексообразователя или вернуться в раствор. При этом возможными вариантами развития реакции могут быть как замещение другими лигандами, так и распад восстановительной формы комплекса.

Воздействие на указанные электролиты лазерного излучения с длинами волн $\lambda = 600-200$ нм приводит к активации процесса диссоциации цианистых соединений типов K_i Me(CN) $_j$, Me $_i$ (CN) $_j$, K_i Me $_i$ (CN) $_j$ и других подобных комплексов. Это способствует, с одной стороны, снижению концентрации исходных химических соединений, но с другой – создает градиент концентрации продуктов диссоциации, в частности, свободных ионов металлов (Me), тем самым обуславливая увеличение локальной скорости электрохимического осаждения в целом [2–4].

Для исследования влияния различных параметров фотоэлектрохимического процесса на эффективность фотодиссоциации комплексных ионов была составлена аналитическая модель такого процесса, полученная в результате решения системы дифференциальных уравнений на основании закона Бугера — Ламберта — Бера (закона Бугера) в дифференциальной форме.

Постановка задачи и моделирование

С одной стороны, лазерное излучение, проходя электролит, испытывает ослабление энергетических характеристик (в частности, интенсивности), что приводит к меньшей интенсификации фотохимической диссоциации цианистых комплексов. С другой, осаждающиеся на поверхности катода металлические покрытия, тем более в присутствии блескообразующих добавок в электролитах, традиционно обладают высокими коэффициентами отражения R=0.90-0.98, что делает необходимым учитывать интенсивность отраженного излучения, которое тоже испытывает ослабление в соответствии с законом Бугера при распространении в обратном направлении. Энергия излучения, распределенная в слое электролита h вдоль координаты x в пределах диаметра зоны влияния лазерного излучения, определяется суммарной интенсивностью (рис. 1).

Рис. 1. Схема лазерной фотохимической активации электрохимических процессов **Fig. 1.** Scheme of laser photochemical activation of electrochemical processes

Для получения аналитической модели решалась задача о стационарном распределении интенсивности потока монохроматического лазерного излучения с граничным значением интенсивности I_0 в слое фоточувствительного раствора электролита толщиной h с начальной концентрацией n_0 вдоль координаты x (рис. 1). При этом, спустя несколько наносекундных импульсов, в системе возникает стационарное распределение интенсивности и концентрации вдоль зоны лазерного влияния.

Закон Бугера можно представить в виде дифференциального уравнения для определения интенсивности в стационарном режиме. При этом составляющая интенсивности $I_1(x)$ с увеличением координаты x будет уменьшаться, в то время как $I_2(x)$ — возрастать:

$$\begin{cases} \frac{dI_1}{dx} = -\sigma I_1(x) n(x); \\ \frac{dI_2}{dx} = \sigma I_2(x) n(x), \end{cases}$$
(1)

где σ — эффективная площадь сечения поглощения, σ = ε / $N_{\rm A}$, м²-моль¬¹, используется вместо коэффициента экстинкции ε , м¬¹; $N_{\rm A}$ — число Авогадро; $I_i(x)$ — интенсивность лазерного излучения, ${\rm BT/M^2}$; n(x) — концентрация, м¬³.

Антиградиент концентрации dn/dx фотовосприимчивого компонента электролита направлен в сторону уменьшения концентрации, т. е. пропорционален функции распределения концентрации n(x) с противоположным знаком. Кроме того, изменение концентрации по глубине электролита вдоль координаты x обусловлено текущей эффективностью поглощения фотонов на рассматриваемой глубине, которая численно определяется значением σ и квантовым эффектом фотодиссоциации η (отн. ед.). Величина η равна относительному числу сохранившихся фотовосприимчивых комплексов на каждый ватт мощности лазерного излучения, приходящийся на один квадратный метр электролита, в плоскости, перпендикулярной направлению оси x (рис. 1). Такую зависимость с учетом

$$I(x) = I_1(x) + I_2(x)$$
 (2)

можно представить следующим образом:

$$\frac{dn}{dx} = -\sigma(1 - \eta)n(x)I(x). \tag{3}$$

Граничные условия для системы дифференциальных уравнений, включающей (2) и (3), можно представить в виде:

$$\begin{cases} I_{1}(0) = I_{0}; \\ I_{2}(0) = RI_{0} \exp(-\sigma n_{0}h); \\ n(0) = n_{0}. \end{cases}$$
(4)

Полученная система дифференциальных уравнений (1)—(4) допускает в более простом частном случае аналитическое решение, приведенное в [1]. Однако в представленной форме, а также с целью изучения физико-химического поведения системы в широком диапазоне изменения параметров исследуемого процесса, целесообразно использовать численные методы, реализованные, например, в системе MATLAB [5]. Такую систему можно решить, применяя встроенную функцию *ode*45. Для этого (1)—(3) можно представить в стандартном виде:

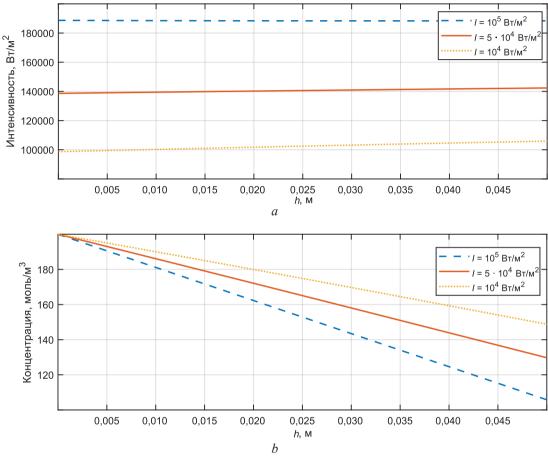
$$\frac{dF}{dx} = \frac{d}{dx} \begin{bmatrix} I_{1}(x) \\ I_{2}(x) \\ n(x) \end{bmatrix} = \begin{bmatrix} -\sigma I_{1}(x)n(x) \\ \sigma I_{2}(x)n(x) \\ -\sigma (1-\eta)n(x)(I_{1}(x)+I_{2}(x)) \end{bmatrix};$$

$$F = \begin{bmatrix} I_{1}(x) \\ I_{2}(x) \\ n(x) \end{bmatrix};$$

$$f(x,F) = \begin{bmatrix} -\sigma I_{1}(x)n(x) \\ \sigma I_{2}(x)n(x) \\ -\sigma (1-\eta)n(x)(I_{1}(x)+I_{2}(x)) \end{bmatrix};$$

$$F(0) = \begin{bmatrix} I_{0} \\ RI_{0} \exp(-\sigma n_{0}h) \\ n_{0} \end{bmatrix}.$$
(5)

В системе MATLAB были составлены script-файлы, позволяющие провести моделирование системы (5) по алгоритму Рунге — Кутта 4—5-го порядков. Тем самым реализуется одношаговый алгоритм для вычисления искомых интенсивности I(x) и концентрации n(x) по глубине слоя электролита h с относительной ошибкой не более 10^{-3} %.


Анализ результатов

На рис. 2 представлены графики распределения интенсивности и концентрации по глубине слоя электролита $0 \le h \le 5$ см при $\sigma = 0.01$ м²/моль, $\eta = 10^{-8}$ моль/Дж, $I_0 = 10^4 - 10^5$ Вт/м²

Доклады БГУИР
Т. 23, № 5 (2025)

DOKLADY BGUIR
V. 23, № 5 (2025)

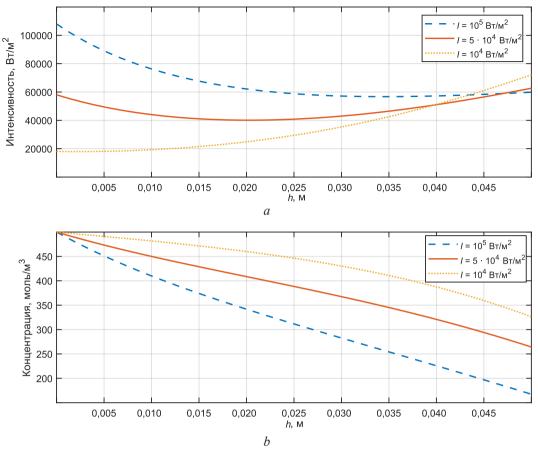

и $n_0 = 200$ моль/м³. Это соответствует параметрам воздействия на цианистый электролит серебрения (K[Ag(CN)₂] – 40 г/л, KCN – 50 г/л, K₂CO₃ – 40 г/л, KNO₃ – 60 г/л). Как видно из рис. 2, при указанных параметрах интенсивность лазерного излучения практически не изменяется с учетом усиления при отражении от поверхности катода (коэффициент отражения R = 0.98 для серебряного покрытия). В случае с концентрацией исследуемых цианидных комплексов можно заметить, что при увеличении интенсивности на порядок концентрация уменьшается почти на 50 %, что свидетельствует об эффективности лазерной активации вблизи поверхности катода в тонком приэлектродном слое порядка нескольких миллиметров.

Рис. 2. Распределение интенсивности лазерного излучения I(a) и концентрации n(b) цианидных комплексов $K[Ag(CN)_2]$ по глубине слоя электролита h для различных значений I при $\sigma = 0.01 \text{ м}^2/\text{моль}$ и $n_0 = 200 \text{ моль/м}^3$

Fig. 2. Distribution of laser radiation intensity I(a) and concentration n(b) of cyanide complexes K[Ag(CN)₂] by the depth of the electrolyte layer h for different values of I at $\sigma = 0.01$ m²/mol and $n_0 = 200$ mol/m³

При увеличении коэффициента поглощения в 10 раз ($\sigma=0,1$ м²/моль), что может быть обусловлено использованием другой длины волны излучения, а начальной концентрации в 2,5 раза ($n_0=500$ моль/м³) графические зависимости имеют вид, представленный на рис. 3. Из рис. 3 можно увидеть, что при таких условиях с уменьшением начальной интенсивности лазерного излучения в два раза концентрация в пределах слоя электролита уменьшается в 1,5 раза для $I_0=10^4$ Вт/м² и более чем в три раза – для $I_0=10^5$ Вт/м². При этом на графике зависимости интенсивности наблюдается минимум (примерно в области 2,5 см), наиболее явно выделенный для $I_0=5\cdot10^4$ Вт/м². Кроме того, вблизи поверхности катода значительное ослабление испытывает лазерное излучение с наибольшей начальной интенсивностью $I_0=10^5$ Вт/м². Этот эффект можно объяснить тем, что лазерное излучение с большей начальной мощностью эффективно разрушает фоточувствительные цианидные комплексы, поэтому отраженное от катода излучение $I_2(x)$ вносит весомый вклад в суммарную интенсивность (формула (2)). Данный эффект наименее ярко выражен для поверхностей с низким коэффициентом отражения R.

Рис. 3. Распределение интенсивности лазерного излучения I(a) и концентрации n(b) цианидных комплексов $K[Ag(CN)_2]$ по глубине слоя электролита h для различных значений I при $\sigma=0,1$ м²/моль и $n_0=500$ моль/м³

Fig. 3. Distribution of laser radiation intensity I(a) and concentration n(b) of cyanide complexes $K[Ag(CN)_2]$ by the depth of the electrolyte layer h for different values of I at $\sigma = 0.1$ m²/mol and $n_0 = 500$ mol/m³

Анализ рассматриваемой модели показал, что варьирование квантового выхода фотодиссоциации η от 10^{-6} до 10^{-10} моль/Дж практически не сказывается на показателях, представленных на рис. 2 и 3. Наиболее эффективное влияние на концентрацию фоточувствительных компонентов оказывают изменения эффективного сечения поглощения σ , а также начальных значений концентрации n_0 и интенсивности лазерного излучения I_0 .

Заключение

- 1. Посредством математического моделирования воздействия лазерного излучения с различной длиной волны на цианистый электролит серебрения установлено, что рост концентрации продуктов диссоциации комплексов $K_i Me(CN)_j$, $Me_i(CN)_j$, $K_i Me_i(CN)_j$ обусловлен увеличением интенсивности лазерного излучения.
- 2. Установлено, что с увеличением сечения поглощения в диапазоне 0.01–0.10 м²/моль степень диссоциации комплексных молекул повышается более чем в три раза, а интенсивность излучения вблизи катода практически не изменяется благодаря эффективному отражению от серебряного покрытия. Квантовый выход в пределах 10^{-6} – 10^{-10} моль/Дж практически не влияет на эффективность лазерной фотодиссоциации.
- 3. Результаты моделирования могут найти применение при разработке технологий лазерной фотохимической модификации фоточувствительных материалов электронной техники.

Список литературы

1. Купо, А. Н. Лазерная технология интенсификации гальванического осаждения функциональных покрытий / А. Н. Купо, А. А. Хмыль, В. Л. Ланин // Технологии в электронной промышленности. 2016. № 8. С. 42–46.

2. Photochemistry (Definition of Terms) [Electronic Resource] // Chemical Engineering Matters. Mode of access: https://chemicalengineeringmatters.wordpress.com/2014/12/17/photochemistry-definition-of-terms/. Date of access: 26.08.2025.

- 3. Upadhyay, Sh. Photochemical Reaction and Applications in Organic Synthesis / Sh. Upadhyay, J. Kumar // ICBC. 2021. Vol. 1, No 4. DOI: 10.33552/ICBC.2021.01.000520.
- 4. Купо, А. Н. Фотохимический механизм стимуляции процесса электрохимической обработки материалов / А. Н. Купо // Известия Гомельского государственного университета имени Ф. Скорины. 2009. № 4. С. 123–131.
- 5. Solve Nonstiff Differential Equations Medium Order Method [Electronic Resource] // MATLAB Help Center. Mode of access: https://www.mathworks.com/help/matlab/ref/ode45.html. Date of access: 20.08.2025.

Поступила 15.07.2025

Принята в печать 27.08.2025

References

- 1. Kupo A. N., Khmyl A. A., Lanin V. L. (2016) Laser Technology of Intensification of Galvanic Deposition of Functional Coatings. *Technology in the Electronics Industry*. (8), 42–46 (in Russian).
- 2. Photochemistry (Definition of Terms). *Chemical Engineering Matters*. Available: https://chemicalengineeringmatters.wordpress.com/2014/12/17/photochemistry-definition-of-terms/ (26 August 2025).
- 3. Upadhyay Sh., Kumar. J. (2021) Photochemical Reaction and Applications in Organic Synthesis. *ICBC*. 1 (4). DOI: 10.33552/ICBC.2021.01.000520.
- 4. Kupo A. N. (2009) Photochemical Mechanism of Stimulation of the Process of Electrochemical Processing of Materials. *News of the F. Skorina Gomel State University*. (4), 123–131 (in Russian).
- 5. Solve Nonstiff Differential Equations Medium Order Method. *MATLAB Help Center*. Available: https://www.mathworks.com/help/matlab/ref/ode45.html (20 August 2025).

Received: 15 July 2025 Accepted: 27 August 2025

Сведения об авторе

Купо А. Н., канд. техн. наук, доц., нач. центра информационных технологий, Гомельский государственный университет имени Франциска Скорины

Адрес для корреспонденции

246019, Республика Беларусь, Гомель, ул. Советская, 102, корп. 5 Гомельский государственный университет имени Франциска Скорины

Тел.: +375 29 630-32-62 E-mail: kupo@gsu.by

Купо Александр Николаевич

Information about the author

Kupo A., Cand. Sci. (Tech.), Associate Professor, Head of the Center for Information Technologies, Francisk Skorina Gomel State University

Address for correspondence

Kupo Aliaksandr

246019, Republic of Belarus, Gomel, Sovetskaya St., 102, Bld. 5 Francisk Skorina Gomel State University Tel.: +375 29 630-32-62 E-mail: kupo@gsu.by