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Abstract. Accurate trajectory prediction of multiple agents is a critical task in the fields of autonomous driving,  
human-computer interaction, and behavior analysis. However, the dynamic and interactive nature of agent behavior 
poses significant challenges, since it requires the formation of complex spatio-temporal dependencies and dynami-
cally evolving interactions between agents. A novel approach is proposed for modeling dynamic relational graphs, 
the core component of which is the attention focus block, taking into account the relative positions of graph-based 
agents. By considering objects in a scene (e.g., vehicles and road elements) as graph nodes and their interactions 
as edges, the proposed approach effectively captures both local and global dependencies in a scene and makes 
a prediction about the future trajectory. The presented approach is evaluated using the Argoverse1 trajectory pre-
diction dataset. Experimental results show that this model outperforms existing methods.
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ДИНАМИЧЕСКОЕ ГРАФОВОЕ МОДЕЛИРОВАНИЕ  
ДЛЯ МНОГОАГЕНТНОГО ПРЕДСКАЗАНИЯ ТРАЕКТОРИИ ДВИЖЕНИЯ
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Аннотация. Точное прогнозирование траектории движения нескольких агентов является важнейшей 
задачей в таких областях, как автономное вождение, взаимодействие человека с компьютером и анализ 
поведения. Однако динамичность и интерактивность поведения агентов создают значительные пробле-
мы, поскольку требуют формирования сложных пространственно-временных зависимостей и динамичес
ки развивающегося взаимодействия между агентами. Предлагается новый подход для моделирования 
динамических реляционных графов, основным компонентом которых является блок акцента внимания 
с учетом относительного положения агентов на основе графов. Рассматривая объекты в сцене (например, 
транспортные средства и элементы дороги) как узлы графа, а их взаимодействие как ребра, предложенный 
подход эффективно отражает как локальные, так и глобальные зависимости на сцене и делает прогноз 
о будущей траектории. Представленный подход оценивается с помощью набора данных для прогнозиро-
вания траектории Argoverse1. Экспериментальные результаты показывают, что такая модель превосходит 
существующие методы.

Ключевые слова: многоагентное прогнозирование траектории, графовая нейронная сеть, механизм вни-
мания.
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Introduction

The rapid advancement of autonomous driving technology is revolutionizing transportation sys-
tems, with trajectory prediction serving as a critical component to enhance both vehicle safety and dri
ving efficiency. The goal of trajectory prediction is to accurately forecast the future behavior of traffic 
participants (e. g., vehicles, pedestrians, cyclists) [1]. This task is highly challenging due to the comp
lex factors involved, including interactions between agents, motion dynamics, and constraints imposed 
by the map environment.

In the early stages of trajectory prediction research, traditional methods were typically based on ve-
hicle dynamics models, utilizing historical states of agents (e. g., position, velocity, acceleration) to pre-
dict future motion trends. Methods such as Kalman Filters, Dynamic Bayesian Networks, and Hidden 
Markov Model demonstrated satisfactory performance in simple traffic scenario [2]. However, in more 
complex and dynamic traffic environments with multi-agent interactions, these traditional methods ex-
hibited significant limitations in modeling intricate interaction relationships and capturing long-term 
dependencies.

With the emergence of deep learning, the field of trajectory prediction has undergone a paradigm 
shift. The integration of high-definition (HD) maps and sensor data introduced new perspectives for re-
search. By combining map information with sensor data, researchers achieved significant improvements 
in prediction accuracy [3]. However, this also introduced challenges related to computational comple
xity and data fusion. Efficiently leveraging such heterogeneous data has become a core research question.  
Early studies often employed rasterized representations to convert HD maps into grid-like 2D images, 
enabling convolutional neural networks (CNNs) to extract spatial features. For instance, Casas et al. [4] 
utilized CNNs to extract road semantic features from rasterized maps, while Hong et al. [5] combined 
high-resolution 3D perception data with semantic maps to encode spatial characteristics. Although these 
rasterization-based methods effectively incorporated map data, their large perception range resulted 
in high computational costs and potential loss of critical map structural information, such as road topo
logy and traffic constraints. To address these limitations, research has gradually shifted toward vectorized 
representations. These methods encode maps, agents, and other scene elements as vectorized features 
and leverage permutation-invariant operators, such as point cloud convolutions, graph convolutions, 
and transformers, to capture scene context. For example, VectorNet [6] as a pioneering work, modeled 
road maps and agent trajectories in a vectorized manner and utilized graph neural networks (GNNs) 
to capture interactions between agents, road environments, and other traffic participants. This approach 
improved the compactness and information retention of map representations, avoiding the information 
loss associated with rasterization. Building on this, LaneGCN [7] constructed a graph model based 
on  road network topology, representing map elements as nodes and using GNNs to encode multi- 
level information, thereby explicitly modeling the local connectivity and global interaction relationships 
of road structures. HiVT [8] proposed a Hierarchical Vectorized Transformer to model multi-granularity 
interactions between agents.

Despite these advancements, most existing methods overly emphasize interactions between agents 
and map elements, while neglecting the potential relationships within agents or within map elements. 
These internal relationships, such as complex multi-agent interactions and internal structural associa-
tions of map elements, are crucial for comprehensively modeling the dynamic characteristics of traffic 
environments. Additionally, existing methods often struggle to effectively integrate local and global 
dependencies, leading to insufficient context capture.

To address these challenges, we propose a novel framework for Dynamic Relational Graph (DRG) 
modeling. This framework represents entities in the scene (e. g., vehicles and road elements) as nodes 
in a graph, with edges capturing their interactions, thereby effectively modeling both local and global 
dependencies within the scene. By incorporating relative positional information into a multi-head graph 
attention mechanism, the model efficiently captures spatio-temporal relationships in non-Euclidean fea-
ture spaces. This approach enables a more nuanced understanding of scene context and agent interac-
tions, significantly improving trajectory prediction accuracy.

Problem statement

The trajectory prediction task aims to generate potential future trajectories for target agents based 
on their observed motion history and surrounding map information. Specifically, in a driving scenario 
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with Na moving agents, we use M to represent the map information and X Na={ , ,..., }x x x0 1  to de-
note the observed historical trajectories of all agents. For each agent i, its historical trajectory over 
the past H time steps are represented as x x x xi i

H
i
H

i� � � � �
{ , ,..., }.

1 2 0

The multi-agent motion predictor generates potential future trajectories in future T time steps 
for  all agents in the scene, denoted as Y ={ , ,..., }y y y0 1 Na . For each agent i, K possible future tra-
jectories and their corresponding probability scores are predicted to capture the multimodal na-
ture of motion. The predicted trajectories for agent i  are represented as y y y yi i i i

K={ , ,..., }
1 2 , where 

each trajectory y y y yi
k

i
k

i
k

i T
k={ , ,..., }, , ,1 2  ( k K∈{ , ,..., }1 2 ) represents the kth  predicted trajectory  

of the ith  agent over future T time steps. The associated probability scores for these trajectories are 
represented as  si i i i

Ks s s={ , ,..., }
1 2 .

Method overview

This study proposes a trajectory prediction model based on relative positional feature fusion, leve
raging a hierarchical network structure to learn and integrate various semantic relational features. As il-
lustrated in Fig. 1, a, the proposed model comprises three primary components: intra-relational feature 
extraction, lane-actor fusion network, and multi-modal decoder.

We adopt a vectorized scene representation approach. As depicted in Fig. 1, b, the process includes 
scene vectorization and the computation of relative positions. Specifically, for each instance, such as tra-
jectories and lane segments, a local reference frame is constructed to decouple the inherent features 
of the instances from their relative information. Following [9], a 5-dimensional relative positional vec
tor r di j i j i j i j i j i j� � � � � �� [sin( ), cos( ), sin( ), cos( ), ]� � � �  between elements i and j is used to rep-
resent the spatial relationships between actors and actors, lanes and lanes, as well as actors and lanes  
in the scene, denoted as ra a

NA
�

�� 5 , rl l
NL

�
�� 5 and ra l

N
�

�� 5 , respectively. Here, N N NA L� � , 
NA indicates the number of actors in the scene, and NL  represents the number of lane elements.

In the next step, the corresponding relative positional information is passed into their respective 
encoders to fuse and extract fundamental features xA and xL. Subsequently, these features, along with  
the relative positional information in the scene ra l→ , are input into the feature fusion stage for compre-
hensive feature integration. Finally, the fused features are fed into the multi-modal decoder to forecast 
the trajectories of all target agents. 

1. Intra-relational feature extraction
Following LaneGCN [7], our trajectory feature extraction module first employs a one-dimensional 

CNNs based Feature Pyramid Network (FPN) to encode the historical trajectories of vehicles within 
the scene denoted as XA, thereby extracting fundamental features. The 1D CNNs effectively captures 
local patterns in the temporal dimension of the trajectories, such as acceleration, deceleration, or turning 
behaviors. Meanwhile, the FPN structure helps to address the diversity of trajectory lengths by extrac
ting multi-scale features, enhancing the model’s ability to represent both short and long trajectories. Af-
ter initial encoding, to further capture the spatiotemporal dependencies of historical trajectories, we uti-
lize a 4-layer Gated Recurrent Unit (GRU) network to process the encoded trajectory features and ex-
tract refined representations X A

r . Compared to Long Short-Term Memory model, GRU offers a simpler 
structure and higher computational efficiency, making it particularly well-suited for trajectory modeling 
in complex scenarios. For extracting road features from map tensors, we leverage PointNet [10] to en-
code the lane nodes and structural information of the road network XL, thereby obtaining fundamental 
lane features XL

r . PointNet directly processes unstructured data points within lanes and effectively 
models both the local geometric features and the global topological structure of the lanes, which ensures 
the lane features incorporate critical configuration information, such as lane curvature, branching points, 
and connections between nodes. This process can be demonstrated in the following equations:

X GRU FPN XA
r

A� �
( )

( ( ));
4

1 1                                                          (1)
X PN XL
r

L= ( ),                                                                     (2)

where FPN1 1×  refers to 1D CNNs based Feature Pyramid Network; GRU ( )4  indicates the four-layer 
GRU operation; PN corresponds to the PointNet network.
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Although the aforementioned methods generate relatively rich features, existing approaches often 
directly utilize these features without explicitly modeling the latent relationships within actors (vehic
les) or lanes. These internal relationships are crucial for accurately capturing multi-agent behavior in-
teractions in complex scenarios. To address this limitation, we explicitly introduce relative positional 
information, which is paired with the corresponding actor or lane features and then fed into the Relative 
Position-aware Graph Attention Transformer (RP-GAT). Relative position explicitly represents the spa-
tial positioning and semantic relationships between actors or between lanes, such as the relative distance 
and angles between vehicles, or the topological structure between lane nodes. Through the attention 
mechanism of RP-GAT, these features are further fused, resulting in more expressive actor and lane 
features, denoted as xA  and xL , respectively:

x X r

x X r
A A

r
a a

L L
r
l l

�

�

�
�
�

��

�

�

�

�

( )

( )

( , );

( , ),

1

1
                                                                     (3)

where ξ( )1  is the one-time loop of RP-GAT module.

Fig. 1. Illustration of proposed DRG: a – architecture and flowchart of proposed model; 
b – scene vectorization and relative position calculation.

 a

b
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2. Feature fusion
At first, two separate linear layers are applied to further process the features of actors and lanes 

obtained from corresponding encoders. These processed features are then concatenated along the first 
dimension. Subsequently, the concatenated features, combined with the relative positional information 
of all elements in the scene, are fed into the RP-GAT to produce actor trajectory features that incorpo-
rate road element information. The specific details of RP-GAT are illustrated below in Fig. 2. The in-
put features are first passed through three linear layers to obtain Q (Query matrix), K (Key matrix),  
and V (Value matrix), respectively. Multi-head attention is then applied to compute attention scores 
between these representations. To incorporate the corresponding relative positional information, the re
lative positional features are mapped to the same dimensional space through a linear layer and mul-
tiplied with the attention scores. This results in scores that comprehensively account for both feature 
interactions and positional relationships. Finally, a feedforward network further processes these scores 
through L times (here, L is 4). After each feedforward operation, the Add & Norm module is applied, 
where the input of the feedforward network is added back to its output, followed by layer normaliza-
tion. This ensures better gradient flow during training and stabilizes the learning process. Thus obtain  
the final trajectory features for the actors denoted as xA

p . The processes can be represented by the equation

x MLP x MLP xA
p

A L� ��( ) ( ) ( )
( ( ) ( )),

4 2 2                                                  (4)

where MLP( )2  is the two sequential linear layers; ⊕  is the concatenate operation; ξ( )4  is the four times 
loop of RP-GAT module.

3. Multi-modal decoder
During the trajectory generation process, we first utilize the fused actor trajectory features xA

p  
to model multi-modal future trajectories at first. To generate K (in this case, K = 6 ) possible future 
trajectories, the model employs a multi-head attention mechanism to map the embedded features into 
multiple latent spaces, each corresponding to a distinct trajectory mode. The resulting embedding is de-
noted as E. This multi-head projection is implemented using two fully connected layers with non-linear 
activation functions. Then, the embedded vectors E  are used to generate confidence scores S of each 
mode of each agent as well as predict the final K  trajectories denoted as Y. Specifically, three sequen-
tial linear layers to generate the trajectories of each agent. To evaluate the confidence of each trajec-
tory mode, the model applies three linear layers and a SoftMax function to generate confidence scores 
for K trajectories of each agent denoted as s. The processes are shown in equations:

E MLP x

MLP E

MLP E

A
p�

�

�

�

�
�

�
�

( )

( )

( )

( );

( );

( ( )),

2

3

3

Y

S �

                                                                       (5)

where MLP( )3  is the three sequential linear layers; χ is the SoftMax function.

Fig. 2. Architecture of Relative Position-aware Graph Attention Transformer: MLP is the Linear layer  
with Layer Normalization and ReLU activation function; “×” is the matrix multiplication
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When predicting future trajectories, directly regressing trajectory points Y often leads to physical 
inconsistencies, such as discontinuities between consecutive points, which deviate from the smooth-
ness observed in real-world trajectories. To address these issues, we adopt a parameterization ap-
proach based on monomial basis functions for trajectory generation [9]. Specifically, the trajec-

tory is represented as a polynomial expansion with respect to time t, expressed as p t w ti
i

n
i

( ) �
�
�

0

,  

where wi ∈
2
  are the polynomial coefficients that control the trajectory’s shape, and n is the poly-

nomial order. The n is configurated as 5, consistent with the 5-second time horizon according to [11].  
Here t is a normalized time variable that takes values between 0 and 1, corresponding to the evenly spaced 
time steps over the prediction horizon. The normalization ensures time remains relative and independent 
of scale. This polynomial-based approach leverages the higher-order differentiability of polynomials 
to inherently ensure the continuity and smoothness of the generated trajectories, effectively mitiga
ting the physical inconsistencies often encountered in non-parametric prediction methods. Furthermore,  
this multimodal trajectory generation mechanism dynamically captures various plausible outcomes 
in complex traffic scenarios while assigning confidence levels to each predicted mode. This not only 
enhances the interpretability of the predictions but also improves their practical applicability  
in real-world settings. The detailed implementation can be found at https://github.com/tyjcbzd/DRG.

Experiments and results

Dataset description. We train and test proposed model on Argoverse v1 Motion Prediction Data-
set [11], it is a widely used benchmark designed to facilitate research in self-driving motion prediction. 
It provides high-quality trajectory data for agent vehicles along with semantically rich high-definition map 
information, enabling comprehensive spatiotemporal modeling. The dataset consists of 324.557 real- 
world driving scenarios collected from over 1.000 hours of driving in Pittsburgh and Miami. These sce-
narios are divided into training, validation, and test sets, containing 205.942, 39.472 and 78.143 samp
les, respectively. Each scenario spans five seconds, sampled at 10 Hz, with the first two seconds provi
ded as historical trajectories of agent vehicles, requiring forecasting models to predict their movements 
for the subsequent three seconds [9]. The dataset includes both trajectory data and high-definition map 
elements such as lane centerlines with connectivity information, offering a realistic and challenging 
benchmark for trajectory prediction in complex urban driving environments.

Implementation details. We adopt a PolylineLR [7] scheduler to control the learning rate dyna
mically over 40 training epochs. The initial learning rate is set to 1.0e-4, and the values for learning rate 
adjustments are defined as [1.0e-4, 1.0e-3, 1.0e-3, 1.0e-4], corresponding to the milestones [0, 5, 35, 40]. 
At the beginning (epochs 0–5), the learning rate increases linearly from 1.0e-4 to 1.0e-3. Epochs 5–35, 
the learning rate remains constant at 1.0e-3 to ensure stable optimization in the main training phase. 
Finally, during epochs 35–40, the learning rate decays linearly back to 1.0e-4 to promote convergence. 
This dynamic scheduling strategy provides a warm-up period, a stable training phase, and a gradual 
learning rate reduction for smoother convergence. The model is trained on 2 RTX 3090 with a global 
batch size of 64. In addition, we consider only agents and lane segments within a 50-meter radius of fo-
cal agent.

Evaluation metrics. We have adopted the standard testing and evaluation methodology used in mo-
tion prediction competitions to assess prediction performance [7]. Key metrics for individual agents in-
clude Minimum Final Displacement Error (minFDE), Minimum Average Displacement Error (minADE) 
and Miss Rate (MR). Here MR measures the percentage of trajectories, where the distance between 
the predicted final position and the ground truth final position exceeds a predefined threshold d (here d 
is configurated as 2). minFDE reflect the accuracy of the predicted endpoints, and minADE indicates 
the overall bias in the predicted trajectories. Calculations were carried out using the following formulas:

2 2

{1,2,..., } 1

1 ˆ ˆmin ADE min ( ) ( ) ;
T

i i
t t t ti K t

x x y y
T ∈ =

= − + −∑                                       (6)

{ }
2 2

1,2,...,
ˆ ˆmin FDE min ( ) ( ) ;i i
T T T Ti K

x x y y
∈

= − + −                                          (7)
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( )2 2

{1,2,..., }1

1 ˆ ˆMR 1 min ( ) ( ) ,
N

i i
T T T Ti Kn

x x y y d
N ∈=

= − + − >∑                                    (8)

where t T∈[ , ]0 , ˆ ˆ,t tx y  are the predicted points at time t; ˆ ˆ,i i
T Tx y  are the predicted points  

of a positive trajectory (e. g. with minimal final displacement error) at time t; N is the total number of all 
trajectory samples; 1( )⋅  is a function that returns 1 if the condition in brackets is true and 0 otherwise.

Quantitative results. Tabl. 1 shows the comparisons with the state-of-the-art methods listed  
on the leaderboard of the Argoverse 1 motion Forecasting test set (the numbers highlighted in bold 
represent the best-performing results). Specifically, we compared several trajectory prediction mo
dels, including LaneGCN, DenseTNT, THOMAS, HiVT-128, GANet, SceneTrans, MacFormer,  
and proposed DRG model, evaluating their performance in terms of minFDE, minADE, MR, and model 
parameters (M). The evaluation focused on both single- and multi-modal trajectory prediction (K is 1  
and 6 respectively).

Table 1. Comparisons with the state-of-the-art methods listed on the leaderboard  
of the Argoverse 1 motion Forecasting test set 

Methods minFDE minADE MR Param/MK = 6 K = 1 K = 6 K = 1 K = 6
LaneGCN [7] 1.36 3.76 0.87 1.70 0.162 3.7

DenseTNT [12] 1.38 3.69 0.91 1.70 0.125 –
THOMAS [13] 1.44 3.69 0.94 1.67 0.104 –
HiVT-128 [8] 1.17 3.53 0.77 1.60 0.127 2.5
GANet [14] 1.16 3.46 0.81 1.59 0.118 2.4

SceneTrans [15] 1.24 4.57 0.80 1.75 0.126 15.3
MacFormer [16] 1.22 3.72 0.82 1.70 0.120 2.4

DRG (ours) 1.24 2.89 0.73 1.46 0.109 2.2

Experimental results demonstrate that our model achieves superior performance across multiple 
metrics, especially in multi-modal prediction (K = 6). Our model achieves a minADE of 0.73, outperfor
ming all comparison models, including HiVT-128 (0.77) and GANet (0.81). In single-modal predic-
tion (K = 1), our model achieves a minADE of 2.89, significantly better than other methods, such  
as GANet (3.46) and DenseTNT (3.69). These results indicate that our model not only exhibits higher 
accuracy in single trajectory prediction, but also excels in scenarios requiring the modeling of diverse 
potential trajectory distributions. By more accurately capturing the actual movement trends of the tar-
get, our model substantially reduces prediction errors in multi-modal scenarios. Furthermore, our mo
del demonstrates strong performance in terms of miss rate (MR). In the multi-modal prediction task, 
the MR reduces to 0.109, one of the lowest values among all compared models. This significant reduc-
tion in miss rate highlights the model’s higher confidence and robustness in predicting target trajecto-
ries, effectively reducing the instances of failed predictions. This improvement is particularly crucial 
in real-world applications, where safety is paramount, such as autonomous driving and robotic naviga-
tion, as it significantly enhances system reliability and stability. In addition to its prediction accuracy, 
our model exhibits an efficient lightweight design. With a parameter size of just 2.2M, it is significant-
ly smaller than other high-performance models, such as SceneTrans (15.3M) and LaneGCN (3.7M). 
This compact design not only reduces storage and computational costs, but also improves operational 
speed and deployment efficiency in real-world applications.

Qualitative results. Trajectory predictions in four scenarios of varying complexity are illustrated 
in Fig. 3. The leftmost image and the bottom-middle image showcase the performance of our model 
in long-distance scenarios, where it provides accurate and precise trajectory predictions even over ex-
tended horizons. This robustness demonstrates the model’s capability to maintain reliable predictions 
in situations, where long-term positional trends are critical. In the top-middle image, the scene featu
res a highly complex and interactive intersection involving multiple agents. Our model successfully 
predicts trajectories for these agents under different intents, such as going straight or making turns, 
while maintaining robustness across all possible actions. The accurate handling of complex interactions 
between agents highlights the model’s ability to navigate densely interactive environments with high  
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prediction confidence and minimal error. The rightmost image depicts a three-pronged intersection, 
where the intent of the vehicles is less clear. In this scenario, our model produces diverse and multimo
dal predictions, spreading the predicted trajectories across various potential outcomes. These predictions 
include not only straight-ahead motions, but also turning behaviors, all conditioned on the actual road 
topology and environment constraints. This capability of capturing trajectory uncertainty in ambiguous 
scenarios ensures that the model remains flexible and adaptive to diverse possibilities, further enhancing 
its practical utility.

Conclusion

1. A novel framework, Dynamic Relational Graph Modeling, for multi-agent trajectory prediction 
is proposed. The core component is the Relative Position-aware Graph Attention Transformer, which 
dynamically integrates graph attention mechanisms and spatiotemporal position encoding to model  
inter-agent dependencies with precision. Leveraging the modular nature of the transformer architecture, 
our framework is capable of capturing long-range interactions and enhancing multi-layer trajectory 
representations.

2. Experimental results on the Argoverse1 dataset show superior performance and interpretability 
in analyzing evolving inter-agent relationships. The ability to explicitly model dynamic relational struc-
tures positions our approach as an ideal tool for dynamic systems in real-world scenarios requiring fine-
grained trajectory prediction, such as autonomous driving, human-computer interaction, and collabo-
rative robotics. Future work will focus on extending hierarchical modeling, improving computational 
efficiency for real-time deployment, and validating robustness across diverse datasets. 

3. The source code of the project has been published and is available for free non-commercial use: 
https://github.com/tyjcbzd/DRG.
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