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Abstract. Generative diffusion models are a well-established method for generating high-quality images. Howe-
ver, there are studies that show that diffusion models are less privacy-friendly than generative models, such as ge-
nerative adversarial networks and a growing family of their modifications. The discovered vulnerabilities require 
in-depth study of various security aspects. This is especially important for sensitive areas such as medical image 
analysis tasks and their practical applications. The paper describes a method for detecting image patterns presented 
in generated images that can potentially be identified in real CT images of patients with pulmonary tuberculosis. 
The method includes the following main procedures: correlation of pairs of generated and real images to pre-select 
pairs that involve further analysis; calculation of correlation statistics using direct and inverse Fisher transforms; 
performing affine image registration and calculating pairwise similarity scores; nonlinear (elastic) image registra-
tion and recalculation of similarity scores to highlight the most similar/dissimilar image areas.
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МЕТОД ОБНАРУЖЕНИЯ ХАРАКТЕРНЫХ ПАТТЕРНОВ  
РЕАЛЬНЫХ ПАЦИЕНТОВ НА СГЕНЕРИРОВАННЫХ ИЗОБРАЖЕНИЯХ
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Объединенный институт проблем информатики Национальной академии наук Беларуси  
(г. Минск, Республика Беларусь)

Аннотация. Генеративные диффузионные модели являются общепризнанным методом генерации высоко-
качественных изображений. Однако среди исследований есть примеры, подтверждающие, что диффузион-
ные модели менее конфиденциальны, чем генеративные модели, такие как генеративные состязательные 
сети и растущее семейство их модификаций. Обнаруженные уязвимости требуют глубокого изучения раз-
личных аспектов безопасности. Это особенно важно для таких чувствительных областей, как задачи ана-
лиза медицинских изображений и их практическое применение. В статье рассмотрен метод обнаружения 
шаблонов изображений, представленных на сгенерированных изображениях, которые потенциально могут 
быть идентифицированы на реальных изображениях компьютерной томографии пациентов с туберкулезом 
лёгких. Метод включает следующие основные процедуры: корреляция пар сгенерированных и реальных 
изображений для предварительного выбора пар, которые предполагают дальнейший анализ; вычисление 
статистики корреляции с использованием прямого и обратного преобразований Фишера; выполнение аф-
финной регистрации изображений и расчет оценок парного сходства; нелинейная (эластичная) регистра-
ция изображений и повторный расчет оценок сходства для выделения наиболее похожих/несхожих облас-
тей изображения.

Ключевые слова: диффузионные генеративные модели, компьютерная томография, сохранение конфи-
денциальности.
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Introduction
The generated medical images could substitute the real ones in different scenarios of development 

and use of diverse deep learning applications [1–3]. In this particular work, we considering the compu-
ted tomography (CT) images created by a denoising diffusion model. This type of generative models 
represents an emerging class of generative neural networks that produce images from a training distri-
bution via an iterative denoising process [4, 5]. Compared to the previous image generation approaches, 
such as commonly known generative adversarial networks (GANs) together with the growing family 
of their modifications and variational autoencoders, diffusion models produce higher-quality samples 
that easier to scale and control [6].

Consequently, diffusion models have rapidly become the de-facto method for generating high-quali-
ty and high-resolution images. Nevertheless, in their work [6] authors state that diffusion models are less 
private than prior generative models such as GANs, and that mitigating these vulnerabilities may require 
new advances in privacy-preserving training. In this respect, one of the main goals of present study was 
to estimate the chances of disclosing private image patterns under specific conditions we are working 
in. In particular, a need for image generation could appear in both cases including very large and re-
latively small image training sets. Therefore, it was necessary to give certain priority to computational 
experiments, which reveal the influence of the size of image datasets used for training generative models 
to the probability of possible low data security.

In general, there are many kinds of image properties that can be utilized for distinguishing radio-
logical images of a given modality. They include differences caused by specific “signatures” of images 
that characteristic for certain brands of radiological imaging devices, differences associated with age 
and gender of patients, various body lesions, specific image features coming from the artificial objects 
presented in the body (e. g., cardio-stimulators, objects and traces left after underwent surgery), as well 
as differences induced by the patients’ pose and body deformations, atypical anatomy, and so on. 

In this work, we limit ourselves by the methods that searching similarities associated with the pa-
tients themselves. In other words, we concentrating on the problem of detection of possible “fingerprints” 
(ima ge patterns) presented in generated images that can be potentially identified in the radiological ima-
ges of real lung tuberculosis patients. Similar to many others, such patterns are composed of the spatial 
(say, shape) and the intensity features. It is important to note that we admit that the patterns of interest 
could be slightly deformed in both spatial and the intensity domains due to the factors mentioned above. 
Nevertheless, they should also be identified and accompanied by an appropriate quantitative measure.

Image data
Original image data. We used 2D axial slices of 3D CT image datasets of tuberculosis patients that 

satisfy to all the existing regulations, limitations, and the agreements. All the images were acquired 
on the same CT machine and anonymized in due course before any steps of their computerized analysis. 
There were no ways for disclosure, share, and other means of dissemination of personal patients’ data. 
The main steps of CT image data preparation procedure described below.

It is obvious that different axial slices (sections) of the body are anatomically different. However, 
for the human eye and corresponding quantitative features they appear reasonably similar. The similarity 
rates depend on different factors such as the specific location of sections in the human body, the indi-
vidual anatomy of each patient, the CT scanning protocol (e. g., slice thickness), and several others. 
However, considering the fact that in this study we are extensively using convolutional neural networks, 
these anatomical variations can be treated as a sort of “natural anatomical image augmentation”. Clearly, 
such natural augmentation is far better than any artificial one produced by common software libraries. 
Creation of the dataset of CT image slices was done in four main steps:

– the creation of the initial dataset is based on a large collection of CT images containing up 
to 10,714 CT scans (approximately 0.7 TB of DICOM image data);

– converting all image files from DICOM to Niftii (also known as nii.gz). No personal data  
in the commonly used definitions is presented;
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– excluding from the original 10,714 CT scans those that do not have information on the patient’s 
age and gender. The resulting 8,463 CT scans included 4,662 males and 3,801 females. In total, they 
amounted to 288 GB, losslessly compressed;

– splitting all selected 8,463 3D images into 2D axial slices. The result was 1,002,012 2D images 
of 512×512 pixel sections (574,309 men and 427,703 women). They were exported to lossless PNG for-
mat with an intensity of 8 bits/pixel. 

The study image datasets. Considering the importance of the training set size in the problem of de-
tecting generated image patterns that inherit from the real patient images, we created 5 pairs of image 
datasets. The size of training sets gradually increased and consisted of 6, 60, 600, 6000, and 60 000 ima-
ges respectively. Sizes of the sets of corresponding generated images were fixed to 240 items in each 
of 5 pairs. In each occasion the 240-sized subsets of generated images were randomly sampled from lar-
ger sets of artificial images generated based on their respective “parental” sets of the real ones. Image 
generation was done using diffuse generative neural models. Examples are provided in Fig. 1.

All training image datasets were perfectly balanced by gender, i. e., consisted of 50 % of female 
and 50 % of male subjects. Also, all the patients were aged of 26 complete years of life except for the ones 
included in the dataset containing 60 000 images which composed of people aged 24–39 years. 
The five versions of generative neural networks were trained on each of five training sets separately.

In order to provide the necessary variability of images used for training the diffuse generative mo-
dels, we conditionally sub-divided image slices into the following three anatomical categories which 
are conditionally referred to as “classes” (Fig. 1):

c1: The upper part of liver;
c2: The heart class, which was represented by a middle heart section plus some limited amount 

of adjacent axial slices along with Z neighborhood;
c3: The shoulders which include the upper part of lungs and their close neighboring sections above 

and below them along with Z axis.

It should be noted that it was impossible to consider other distinct anatomical sections such as the ones 
situated at the neck and kidney levels. This is because all the patients were suffering from lung tuber-
culosis and therefore the patients were scanned only within the regions of lungs plus few additional 
safety slices.

Evaluating the difference of real and generated images using statistical metrics

Statistical metrics are used at the preliminary stage of image comparison based on correlation 
measures computed over the whole images included into the real-vs-generated pairs. The main goal  
of this stage is to select candidates for the further, more thorough analysis. 

Details of computing raw correlation coefficients. We start with pixel-wise Pearson correlation 
of the images. It is easy to see that this case even such simple image miss-match as relative shift of ge-
nerated images compared to the original ones may lead to a dramatic drop of correlation coefficient 
va lue. Same consequences may have place with mutual rotation. Simply speaking, even comparison 
of the shifted/rotated versions of a generated image with absolutely identical real image may not indicate 
the complete image duplication by the 1.0 correlation coefficient. Thus, prior to the comparison of ima-
ges of pair, we apply the rigid-body affine transform (rotation, translation, scaling) to the generated 

Fig. 1. Examples of original (top row) and generated (bottom row) images
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image which brings them to the best possible correspondence. Besides, this operation does not perform 
any local, non-linear deformations of image patterns.

Once generated and real images are overlapped and compared with each other, the image pair with 
maximal correlation is passed to the further analysis. It is important to note that each generated image 
is compared with the real ones but not vice versa. This is because the only set of real images represents 
the whole variety of possible image features being analyzed in the given experimental setup. However, 
any set (portion) of generated images represent only a small fraction of the practically unlimited number 
of generated samples.

The maximal values of correlation of original and generated images as a function of the size 
of five training sets are depicted in Fig. 2. Note that to ease perception and interpretation of correlation 
results, the correlation coefficient values of all 240 generated images are presented not in their original 
random order but sorted in ascending order of correlation coefficient to ease the visual perception.

It is easy to note from Fig. 2 that generative model trained on tiny image set consisting of six ima-
ges reproduces practically exact copies of real images. However, the variability of generated images 
and their deviation from the images placed in the training set is growing up with the increase of training 
set size. This is evident from the systematic shift of plots downwards. In particular, for the training set 
consisted of 60 000 images the Minimum value of Maximal correlation drops down to 0.678.

Statistics of Pearson correlation coefficient. The regularity which was noticed above by way of visual 
analysis of correlation curves can be simply expressed and easily captured by comparison of mean cor-
relation values and other basic statistics. However, corresponding calculations may not be done directly. 
The reason is that arithmetic manipulations with Pearson’s correlation coefficients (e. g., calculation 
of the mean and percentiles) are not mathematically correct [7]. This is because when the correlation co-
efficient is close to 1.0, what is often the case in this study, its distribution is highly skewed. Such a pro-
perty makes it difficult to estimate the confidence intervals and apply significance tests to the correlation 
coefficients for original and generated image datasets. The Fisher’s transformation solves this problem 
by yielding a variable whose distribution is approximately normal, with a variance which is stable over 
different values of correlations. Mathematically, the Fisher’s z-transform is an inverse hyperbolic tan-
gent (artanh). For converting the correlation coefficients into z-scores and back we employed the direct 
and reverse versions of z-transform as implemented in the DescTools package of R [8] wherever ne-
cessary. The resultant statistical characteristics of Fisher’s z-scores and Persons’ correlation coefficients 
with respect to the train set size are given in Tab. 1.

Table 1. Changes of statistical significance values of z-score and correlation r with respect to the train set size

Train set size Mean z/Mean r Min z/Min r Max z/Max r STD z/STD r
6 5.091/0.9999 4.720/0.9998 5.358/0.9999 0.1344/0.1336
60 3.316/0.9977 2.135/0.9724 4.482/0.9997 0.5186/0.4766
600 2.211/0.9763 1.172/0.8248 3.810/0.9990 0.5762/0.5199

6000 1.968/0.9617 0.967/0.7473 2.937/0.9944 0.4231/0.3995
60000 1.196/0.8323 0.825/0.6776 1.674/0.9321 0.1830/0.1810

Fig. 2. Dependence of max pair-wise correlations on training set size for 240 generated images taken at random  
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The graphical illustration of Fisher’s z-scores of the statistical significance of differences of real 
and generated images as a function of train set size is depicted in Fig. 3.

Assessing the difference of real and generated images using Fréshet Inception Distance score
The Fréshet Inception Distance (FID) [9] can be viewed as a further development of the Inception 

metric which is based on the Inception V3 neural network model. The FID metric essentially is an algo-
rithm that combines two different, partly controversial, integral measure of the quality of image gene-
ration. These components are:

– a metric of the “realism” of generated images;
– quantitative measure of the diversity of generated images. 
The above term “realism” can be understood to mean that the generated images generally look like 

the real ones to a human expert. It is difficult to distinguish them visually and, with certain limitations, 
they can replace the real patient images even in different computation scenarios. Note that according 
to the definition, FID score may not be computed for very small image datasets.

Results of computing FID score of four largest test image datasets examined in this study are presen-
ted in Tab. 2. Note that the smaller FID values, the better the results of generation are. Also, the smallest 
training set contained only six images is excluded from consideration here because this case generated 
images are appearing pretty much as the exact copies of training images and the calculated FID score 
values are unstable.

Table 2. FID scores for relatively large datasets examined in this study

Train set size 60 600 6000 60 000
Fréshet Inception Distance 70.08 17.02 14.45 10.71

It is easy to see that the quality of generated images, especially in relation to their variability (Fig. 2, 
Tab. 1) is growing up while increasing the training sets. This is well agreed with the other results repor-
ted above.

In addition to the comparison of FID scores for gradually increasing four training sets, we performed 
an experiment to testify that FID score is sensitive enough to recognize whether a set of generated ima-
ges was obtained by the given set of real parental ones. This test was accomplished with the help of se-
ven image sets of randomly sampled real images and seven sets of corresponding generated ones. Each 
of seven real image sets consisted of 600 images of patients aged 26 years including exactly 300 females 
and 300 males. Results are summarized in Fig. 4.

Fig. 3. z-scores of the significance of differences of real and generated images 

Fig. 4. Fréshet Inception Distance scores calculated for all pairs composed  
of seven real and seven generated image sets
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Fig. 4. clearly demonstrates that each set of generated images is much closer to their respective 
parental training sets. Indeed, the elements of resultant matrix of FID scores situated on the leading 
diagonal are substantially smaller than the others. The variability within the elements of the leading 
diagonal themselves can be explained by the natural anatomical diversity of the real images from which 
the training datasets were composed.

Localizing and measuring the differences of real and generated images  
using nonlinear image deformations
The nonlinear image registration based on elastic image deformations is aimed at automatic estab-

lishing geometrical correspondences between the content of two images [10]. Typically, the nonlinear 
registration applied after the affine registration which put the image pair in a rough correspondence 
by applying linear transformations such as image shift, rotation, and scaling. Mathematically, the non-
linear registration is an ill-posed problem. Nevertheless, in practice applying the nonlinear image defor-
mations allows to improve mutual image correspondence dramatically. 

From computational point of view, the nonlinear registration is implemented as iterative optimiza-
tion task whose cost function forces to perform deformations which ultimately resulted in the best image 
match. This particularly means that nonlinear registration is computationally-expensive. This is partly 
overcome by the parallelization using recent multi-core processors or GPU-based parallel implemen-
tation. In this work, both affine and nonlinear registrations were performed using RNiftyReg library 
of R language environment [8]. The cost function of the iterative optimization process includes suitable 
similarity metric to measure the quality of image match at every iteration step. Typically, the similarity 
measured by correlation of current and target images, or by the value of mutual information, or by an ad 
hoc synthetic function, or somehow else. 

The mutual information (MI) is the most commonly used measure of pixel-wise similarity of two com-
pared images that has solid theoretical basis [11]. Indeed, MI is a basic concept from information theory. 
It intimately linked to that of entropy of a random variable, a fundamental notion in information theory 
that quantifies the expected “amount of information” held in a random variable. In the context of image 
registration, it used to measure the amount of information that one image contains about the other [12]. 
The MI registration criterion postulates that MI is maximal when the images are correctly aligned. Thus, 
the value of MI at the final iteration step could be used as a good and robust metric of the similarity 
of real and generated images. The robustness here is due to the fact that the random vectors in this parti-
cular case are image pixels, the number of which is measured in hundreds of thousands or even millions.

Fig. 5 illustrates how the generated image transformed in two steps to its deformed version that 
match best the real target image. The key differences are highlighted by arrows. The values of MI score 
are given underneath. 

Results and discussions

In this paper, we have introduced a method for detection of image patterns presented in generated 
CT image slices that can be identified in the real images of lung tuberculosis patients. The method 
inc ludes the following basic procedures: correlation of pairs of generated and real images for selec-
tion of pairs suggestive for the further analysis; computing correlation statistics using the direct and 
inverse Fisher’s transforms; performing affine image registration to put image pairs in rough corres-

Fig. 5. Example of real (a) and the most similar (b) generated images along (MI-1 = 10.5)  
with the results of fitting generated image to the real one using linear affine (c) (MI-2 = 11.7)  

and nonlinear (d) (MI-3 = 12.5) transforms; the key differences are highlighted by arrows

 a b c d
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pondence and calculating pair-wise similarity scores; non-linear (elastic) image registration, re-calcu-
lation of si milarity scores and highlight the most similar/dissimilar image regions. Finally, we compute 
the FID distance of original and generated image datasets for assessing the overall quality of generation. 
Computational experiments were performed on 5 image training sets consisted of 6, 60, 600, 6000, 
and 60 000 CT image slices. As a result, it was found that images generated on small training sets (about 
100 images and less) are nearly duplicates of the real images. The fraction of “distinct” artificial images 
grows with the increase of training set size. For instance, the inter-group FID distance is equal to 17.02, 
14.45, and 10.71 for N = 600, N = 6000, and N = 60 000 respectively.

Conclusion

1. Based on several quantitative evaluations, it is found that images generated on small training 
sets (around 100 images or less) are almost duplicates of real patient images. The proportion of visually 
“distinguishable” synthetic images increases with the training set size. The Fréshet Inception Distance 
distance between groups decreases from 17.02 for N = 600 to 10.71 for N = 60,000, respectively.

2. Further research is needed to explore precise patterns for extracting and matching images that ap-
pear visually similar but cannot be compared using feature-based or pixel-based algorithms.
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