Joknager BI'YUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

@)
http://dx.doi.org/10.35596/1729-7648-2024-22-4-105-113
Original paper

UDC 004.738; 615.47

MODEL AND STRUCTURE OF IoT NETWORK
FOR ALZHEIMER’S DISEASE DIAGNOSTICS

ULADZIMIR A. VISHNIAKOU, CHUYUE YU

Belarusian State University of Informatics and Radioelectronics (Minsk, Republic of Belarus)

Submitted 22.01.2024

© Belarusian State University of Informatics and Radioelectronics, 2024
Benopycckuii rocyapCTBEHHBIN YHUBEPCUTET HH(OPMATHKH U PATHOIEKTPOHUKH, 2024

Abstract. The article presents the structure and model of an Internet of Things network that can be used for re-
mote rapid detection of Alzheimer’s disease. A local server model of the Internet of Things network has been
created for personalized medical care on the client side. The model corresponds to the characteristics of the Inter-
net of Things network: interconnection between devices, real-time communication, data processing and analysis,
the use of various protocols for data transfer and exchange. When building the model, the Flask framework was
used to create an application instance with a trigger condition for sending data from a smartphone to a local server
via an HTTP request. The local server receives the HTTP request sent by the smartphone and processes the data.
The result of the procedure is transmitted through the MQTT protocol to the MQTT client that has been subscribed
to certain topics, i.c., the smartphone. Taking into account the selected structure and configuration of the Internet
of Things network device, a complete model of this network was built, which can be applied to various applica-
tions. The functions and performance of the model are verified through experiments.

Keywords: Internet of things network, IT diagnostics, Flask, EMQX, MQTTX, HTTP, prediction.
Conflict of interests. The authors declare no conflict of interests.

For citation. Vishniakou U. A., Chuyue Yu. (2024) Model and Structure of IoT Network for Alzheimer’s Disease
Diagnostics. Doklady BGUIR. 22 (4), 105—113. http://dx.doi.org/10.35596/1729-7648-2024-22-4-105-113.

MOJIEJIb U CTPYKTYPA CETU UHTEPHETA BEIIEH
JIJISI TMATHOCTHUKM BOJIE3HU AJBITEHNMEPA

B. A. BUILIHSIKOB, UYI0? 101

Benopycckuil eocydapecmeennblil yHugepcumen uH@GOPMAmuKy u paouod1eKmpOoHUKU
(2. Munck, Pecnybnuxa benapycsy)

Tocmynuna 6 peoaxyuio 22.01.2024

AHHoTanus. B craThe npencTaBieHsl CTPYKTypa U MOJICNb CETH HHTEPHETA Bellel, KOTOPbIe MOTYT ObITh HCITOJb-
30BaHBbI JUI YJAJICHHOTO OBICTPOTo BBIABICHHS 00ie3HM AublreiiMepa. Co3aHa JIOKalnbHasi cepBepHas MOJEIb
CeTH MHTEPHETa BEIeH TS epCOHATTM3MPOBAHHOTO METUIIMHCKOTO 00CTY>)KUBaHUS HA CTOPOHE KiIHeHTa. Mozeib
COOTBETCTBYET XapaKTEePUCTHKAM CETH MHTEPHETA BEIICH: B3aUMOCBA3b MEXKAY YCTPOHCTBAMH, CBSI3b B PEXKHUME
pearbHOro BpeMeHH, 00paboTKa M aHAJIN3 IaHHBIX, NCIIOIB30BAaHUE PA3IMYHBIX TPOTOKOJIOB IS MIepeiadn U 00-
MeHa JaHHbIME. [Ipn noctpoennn moneny ucnonb3oBaics ¢perimBopk Flask mist coznanus sxzemmisipa mpuiio-
JKEHHS C TPUITEPHBIM YCIOBHEM OTIIPABKH JaHHBIX CO cMapTQoHa Ha JoKambHBIN cepsep uepe3 HTTP-3ampoc.
JlokanbHe1d cepBep momydaer HTTP-3ampoc, oTmpaBneHHBIH cMapTgoHOM, 00pabaTsiBaeT JaHHEIE. Pesymsrar
nporenypsl nepenactcst yepe3 mporokod MQTT mist kimmenra MQTT, KOTOpEII OBLT OANKUCAH HA OMPEIACICHHEIC
TeMbl, T. €. Ha cMapTdoH. C y4yeToM BbIOpAaHHOW CTPYKTYpbI M HACTPOMKH yCTPOMCTBA CETH MHTEpHETA BEIICH
MIOCTPOEHA II0JIHASI MOJIENb JAaHHOW CETH, KOTOPYIO MOXKHO IMPUMEHATh K PA3IMYHBIM IMpUIoKeHUSIM. DyHKIMH
U IPOU3BOAUTENIBHOCTE MOAETH TPOBEPEHBI C TOMOILBIO AKCIIEPUMEHTOB.

105

Joknager BI'YUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

KuaroueBble cioBa: cetb nHTepHEeTa Bele, [T-auaraoctuka, Flask, EMQX, MQTTX, HTTP, nporHos.
Kongankt uaTEepecoB. ABTOPHI 3asBISIOT 00 OTCYTCTBUH KOH(IMKTA HHTEPECOB.

Jas nutupoBanus. Bummasakos, B. A. Monens u cTpyKTypa CeTH HHTEpHEeTa BeIei s JUarHOCTHKH 0OJIe3HU
Amnbrreiivepa / B. A. Bummnsikos, Uyros 0 // Joxnaaer BI'YUP. 2024. T. 22, Ne 4. C. 105-113. http://dx.doi.
org/10.35596/1729-7648-2024-22-4-105-113.

Introduction

Internet of things (IoT) technology primarily relies on information collection devices to establish
connections between objects and the network. It interacts on the basis of predefined protocols to per-
form functions such as tracking and managing information [1]. The monograph [2] provides informa-
tion on the design of the Internet for the analysis of product quality and environmental sound proces-
sing. The construction of an intelligent medical system supported by the 0T technology contributes
to the informatization of medical resources and personalized medical decision-making. This allows
you to analyze, calculate and exchange huge amounts of data. Traditional hospital models rely heavily
on complex processes of multiple analyses, which leads to a loss of time, the necessity of patient pre-
sence, and a decrease in efficiency. In addition, due to regional differences, the distribution of medical
resources is uneven. The IoT model helps to solve these problems.

The authors presented the technology of recognition of Alzheimer’s disease based on the analysis
of voice data, machine learning and a neural network in [3]. In this article, the authors presented a model
and proposed the structure of the IoT network for remote recognition of Alzheimer’s disease. This helps
in early diagnosis and surgical treatment, provides real-time monitoring, expands the voice database
and can help improve the quality of medical services for patients with Alzheimer’s disease.

Flask framework

Flask is a Python based development that relies on Jinja2 template rendering engine and Werkzeug
WSGI routing service component as core of the micro-framework, with good scalability and compati-
bility, can help users to quickly realize a website or web service [4], its work process diagram is shown
in Fig. 1. Routing, debugging and WSGI subsystem, are three core components of Flask framework,
provided by Werkzeug. Among them, routing refers to mapping URI requests to the corresponding pro-
cessing function, generally a view function, Werkzeug provides Flask framework internal routing sys-
tem, which is responsible for route matching distribution and HTTP service response, support for URL
routing request integration and can respond to multiple users access requests at a time. Debugging
means that Werkzeug provides a complete debugging tool, including stack tracing and error alerts, able
to pinpoint the error or exception code during the development process, and perform debugging. WSGI
is known as the Web Server Gateway Interface, is a general interface specification between Python Web
servers and Web applications, Werkzeug implements the WSGI protocol, so that Flask applications
can run on WSGI-compliant Web servers.

Python Web Server Gateway Interface (WSGI)
using Werkzeug tool library

Request—> Call L
Client Server Application

<@—Response -t Return

Fig. 1. The flask framework working process diagram

The template system is provided by Jinja2, a technology used for building dynamic web pages that
allows for the separation of the page’s structure and content. Jinja2 enables developers to embed dyna-
mic Python code within HTML files, generating dynamic content.

106

Joknager BI'YUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

Flask is currently a very popular web framework [5]. It not only allows developers to com-
bine MVC (Model-View-Controller) pattern for development but also supports small teams in quickly
building medium to small-sized websites or web services. Additionally, Flask offers strong customi-
zation capabilities and a powerful plugin library, enabling users to achieve personalized website cus-
tomization while maintaining a concise, easily maintainable, highly secure, stable, and efficient core
functionality. For instance, Flask can be extended with Flask-SQLAlchemy to implement database
functionality, Flask-Login for user authentication, Flask-Mail for email functionality, and also supports
adding ORM (Object-Relational Mapping), form validation tools, file uploads, and more. The basic pat-
tern of Flask is to assign a view function to a URL in the program, whenever a user accesses the URL,
the system will execute the view function assigned to the URL, get the return value of the function
and display it to the browser.

The server in Fig. 1 is the WSGI server responsible for listening to network ports, receiving HT TP re-
quests and invoking the WSGI application to process the requests. Werkzeug provides an implementa-
tion of the WSGI interface. When a client initiates an HTTP request, the request is sent to the listening
interface of the WSGI server, based on the received HTTP request data, the server creates a dictionary
of environment variables (environ), which will be used as parameters along with a callback function
(start_response) to invoke the WSGI application object. An application in Flask is defined as an ins-
tance of a Flask object or its subclass, which is a WSGI application object. When a WSGI server calls
the WSGI application, it is actually calling the Flask object, which will locate the object’s route based
on the URI path and method of the HTTP request. Upon finding a matching route (view function), Flask
will call it to process the HTTP request and get a result, usually a response object will be returned,
the response data includes status code, header and body of a HTTP response, then send the response
back to the client.

EMQX Broker

EMQX (also known as EMQX Broker) is an open-source, distributed MQTT message middleware
server [4], used for implementing MQTT protocol-based message transmission and communication.
It is widely applied in various real-time communication and message push scenarios, including the IoT,
smart homes, and industrial control. The latest version, EMQX 5.0, adopts a brand-new Mria clus-
ter architecture, allowing an EMQX cluster to support up to 100 million concurrent MQTT connec-
tions, significantly enhancing its scalability. Additionally, the Mria cluster architecture reduces the risk
and impact of brain-splitting in large-scale deployments, providing customers with more stable access
to IoT data services.

EMQX supports publish/subscribe messaging model and provides multiple functions including sup-
port for subscribing to wildcard topics, retaining message and Quality of Service (QoS). Wildcard sup-
port is that EMQX supports MQTT wildcard subscription. Clients can use specific wildcard symbols
to subscribe vaguely, flexibly realizing topic-based message filtering, the wildcard symbol includes
two kinds of symbols: “+” and “#”. Retained message refers to the MQTT message retention mechanism
supported by EMQX to maintain message persistence. When a client publishes a message with the retain
flag to designated topic, EMQX server will retain the message and if a new client subscribes to the top-
ic, the retained message will be immediately delivered to the new client. The retain flag is a boolean
value, configurable by the client, which can be either “0” or “1”. Quality of Service (QoS) support refers
to EMQX’s support for MQTT’s QoS level settings. The quality of service for message distribution
can be categorized into QoS 0, QoS 1, and QoS 2, again allowing the client specify its own quality
of message delivery.

As a server-side software, EMQX Broker is responsible for maintaining subscription relationships,
it receives MQTT messages from different clients and ensures that these messages are routed to the cor-
rect subscribers, acting as a relay station for the messages. EMQX Broker is a central server implemen-
ting the MQTT protocol and can be a local server or a cloud server. This project established a connection
with the MQTT Broker server using python code, allowing the application to publish and subscribe
to messages for real-time data transfer and communication. The used connection parameters and their
explanations are shown in Tab. 1.

107

Hokiansr BI'VYUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

Table 1. Connection Parameters for the EMQX Broker
Parameters’ names Parameters’ implications Parameters’ values

broker address The address of the MQTT Broker server is typically an IP address 'localhost'
or domain name used to identify the location of the MQTT Broker

on the network

broker port The port number of the MQTT Broker server is used to identify 1883
the port on which the MQTT Broker is listening on the server

broker username |Optional: Since the EMQX Broker requires authenticated users, Authors’ username
the authors provide a username

broker password |Optional: Since the EMQX Broker requires authenticated users, Authors’ password
the authors provide a password

topic MQTT message publishing and subscribing are done using topics. 'flask/predict’

Clients can publish messages to specific topics or subscribe
to messages from specific topics

Model and structure of IoT network

This project adopted the architecture design of ‘mobile frontend display + Flask framework
backend + EMQX Broker.” The code has strong scalability and maintainability. The system structure
and interaction process are shown in Fig. 2.

Flask framework

”=I Environment using the Werkzeug toolkit ﬁl

Server Application

Client-side (Phone)

Request HTTP request processing

EHTTPY Response € wsG1) [Rule] [Pre loaded model |

[View function | | Tterator]
Auto-loading l

Loading data

Features URL

Page display

Start_response]

Logging
Connecting with EMQX broker

l Mqtt.client H Paho.mgqtt.client l
L =
A
<
o 2
5 3
s A\’

EMQX Broker

Gateways Pub/Sub Core

MQTT

User Interfaces

Quality of

Authentication Service

Username | [Password |
Configurations

[Broker_address H Broker_port H Topic l
l ,

Fig. 2. Structure of [oT network for AD diagnostics

108

Joknager BI'YUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

The Frontend layout of the screen was written in Java, it realized the process of uploading data
to the local server through HTTP protocol and received the prediction result after the data was processed
through MQTT protocol. The Result was presented on the screen. The function of local server was im-
plemented by Flask framework and EMQX Broker, Flask framework received HTTP request sent from
phone, parsed and found a matching view function, executed it, returned a HTTP response. EMQX
Broker precisely sent the prediction result to the client subscribed to the topic cross-platform to realize
the real-time communication. The following is a specific materialization of all the processes in the code,
which was shown in three blocks from client-side to server-side in detail.

1. Uploading data from client to the local server:

a) reading the pre-collected data features from mobile phone. After collected participant’s related
speech, it will be processed and feature-extracted by the data preprocessing and feature extraction al-
gorithms installed on the client. The authors directly load the data feature file in this project, which has
a file extension of ‘csv’;

b) setting URL for the request. The authors set URL as “http.//192.168.100.14:5000/predict”, con-
taining local IP address and local port in data format, 192.168.100.14 was the local IP address of authors’
computers, 5000 is authors’ local port number, which can be used to identify the web service, indicating
that the web service listens on port “5000” on computer. ‘/predict’ was the path portion of URL, which
can be used to identify a specific resource or function in the Web service. In this project, function ‘pre-
dict’ can predict whether a participant has Alzheimer’s disease based on the data uploaded by the client
and generate a diagnostic prediction of Alzheimer’s disease;

c) sending a POST request and receiving HTTP response

Project code as: “response = requests.post(url, json=data[1])”

‘requests’ is a Python third-party library for sending HTTP requests. POST requests are usually
used when the client submits data to the server to perform various operations or create new resources.
The requests.post() method in this line of code accepted two parameters, one was the URL address
to be requested, the other was the requested data. Response variable can store the HTTP response re-
turned by the requests.post() method,

d) checking the status code of the HTTP response object

Project code as: “if response.status _code == 200:
result = response.json()
prediction = result[‘prediction’]
print(‘Prediction result:’, prediction)
else:
print(‘ Request failed:’, response.status code)”

The HTTP status code is a three-digit numerical code returned by the server in response to a re-
quest, it was used to indicate the result of the request’s processing. In particular, status codes starting
with ‘2**’ indicate successful responses, and specifically, a status code of 200 means the request has
been successfully processed. Therefore, authors checked whether the status code of the HTTP response
object was 200, if it was, printed the prediction result from the data returned by the server, if not, then
printed the current status code received, which will help debugging the project.

2. Designing a Flask program:

a) importing modules

Project code as: “from flask import Flask, jsonify, request

from joblib import load
import pandas as pd”

The authors introduced three classes from Flask framework to build web applications, where ‘Flask’
is the main class of it, designed to create instances of Flask applications, ‘jsonify’ is a helper function
provided by the Flask framework that converts a Python object into a JSON-formatted HTTP response,
and ‘request’ can represent an HTTP request initiated by a client. The ‘joblib’ library is a library for seri-
alizing and deserializing python objects in python. The ‘load’ function can load python object from disk
which has been saved to disk by ‘dump’ function. The ‘pandas’ third-party library has also been impor-
ted into the current code environment, providing extensive functionality for handling manipulation
of tabular data (such as csv);

109

Joknager BI'YUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

b) declaring object

Project code as: app = Flask(__name)

After imported all the relevant modules, one can start creating a Flask instance, the line of code crea-
ted an instance of a web application using the Flask framework. Instance ‘app’ can be used to define dif-
ferent routes, handle HTTP requests and errors, set configuration options, etc. The “= Flask(_name)"
part was for initializing ‘app’ variable, which was created by calling the constructor from ‘Flask’ class;

c) setting up route

Project code as: @app.route(‘/predict’, methods=[‘POST’])
def predict():

Routing is the process of defining a mapping between a URL path and its corresponding view func-
tion in Flask application. ‘@app.route’ is a decorator that defines a route in Flask. Routing in Flask
is usually done by using a decorator, which specifies a URL path and associates it with a view func-
tion. The URL path of this project’s decorator was ‘/predict’, implying a client needs to send a request
to the ‘/predict’ path for triggering its bound view function predict(). ‘methods=[‘POST’]’ means
that only POST method can trigger this route when a client sends its HTTP request.

In Flask framework, the routing module of Werkzeug library is responsible for implementing
URL parsing. Different URLs correspond to different view functions. The routing module parsed URL
from the request, matched it to its corresponding view function and executed this function to generate
a response message. A view function is a python function in the web framework that handles an HTTP
request and returns an HTTP response;

d) data processing. Data processing refers to the process of parsing and handling the received request
data in a Flask application. The purpose of data processing is to extract necessary information from
the request for use in business logic.

Project code as: data = request.json
received _data = pd.DataFrame(data)
received _data_series = received _data.iloc[0]

In the ‘predict’ view function, authors first stored the JSON data from the HTTP request in the vari-
able named ‘data’, the structure and content of ‘data’ corresponds to the JSON data sent in the HTTP
request. The variable ‘received data’ has the same content with variable ‘data’, but its format was con-
verted into DataFrame, the first row of variable ‘received data’ was extracted from its DataFrame table
and stored in a Series object called ‘received data_series’. ‘iloc’ is the method provided by the pandas
library for locating the data;

e) responding business. Business response refers to the procedure in the view function where the re-
ceived request data is used for business logic and generate an HTTP response to be returned to the client.
The view function is the primary place in the Flask program where business logic is handled, and it ul-
timately returns the generated response

Part of project code as: def predict():
prediction = predict with_model(received data series)
return jsonify({ ‘prediction’: prediction})

After received the processed data, a function named ‘predict with_model’ was called and data
was input to this function for prediction operation. ‘predict with_model’ was a function defined
by authors in the code, which contained the encapsulated machine learning model. After the data has
been input, the prediction method of the model will be called to make a prediction, its generated result
was stored in variable ‘prediction’. The obtained prediction result was dictionary data, which was sent
back to the client as a response object after being converted into JSON format by ‘jsonify()’;

f) starting up service

Project code as: app.run(host="0.0.0.0", port=5000)

‘run()’ is the method used to start the local development server in the Flask application. ‘host’
is the listening address of the specified server, when its value equals to ‘0.0.0.0°, the server will listen
to all useful network interfaces, making the Flask application accessible to both local and public net-
works. The value 5000 for ‘port’ is the default port number of the Flask development server. Combining
all the above code, the experimental result of running this line was:

110

Joknager BI'YUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

The client initiated the HTTP request by making a request to the URL, the server listened
on the host="0.0.0.0 address and port 5000, the client’s request reached the server and matched the route
with the path ‘/predict’, which triggered its bound view function to process the request, the view function
encapsulated the result of processing, that is, the generated response prediction, into an HTTP response,
which was sent back to the client, who received the HTTP response from the server, and the prediction
result was displayed.

3. Configuring and using the EMQX Broker

Although the HTTP request is already capable of returning the prediction results to the original client
and displaying the results, but it is not possible to save the prediction results or distribute them to other
clients, in order to achieve this function, the authors used the EMQX broker, through the MQTT proto-
col to achieve the prediction results published based on the topic filtering:

a) importing module

Project code as: import paho.mgqtt.client as mqtt

The authors imported ‘paho.mqtt.client’ library into the current code environment, which is a Python
implementation of an MQTT client used to communicate with an MQTT Broker;

b) setting the connection parameters for the MQTT Broker server as shown in Tab. 1;

¢) initializing the MQTT client

Project code as: mqtt_client = mqtt.Client()

Typically, when using the MQTT protocol, it is necessary to create an MQTT client object.
The authors created an MQTT client by using the MQTT client’s class ‘Client’, which was used for com-
municating with EMQX Broker. ‘mgtt client’ was the name of a variable that was used to store the crea-
ted MQTT client object, afterward, it can be used to invoke methods of the MQTT client;

d) connecting to EMQX Broker

Project code as: mqtt _client.connect(broker _address, broker port)
mqtt_client.username _pw_set(broker username, broker password)

The authors established connection to the EMQX Broker by calling the ‘connect()’ method based
on the previously set parameters, broker address and broker port. Since EMQX Broker requires authen-
ticated the user, the ‘username pw_set()’ method of ‘mgtt _client’ class was called, which was used
to set the username and password required to connect to the EMQX Broker, with the parameters that
have been previously set. After a successful connection, the MQTT client implemented by Python code
can be started publishing and subscribing to messages;

e) starting the client loop

Project code as: mgqtt_client.loop_start()

Inthe MQTT protocol, the client needs to continuously maintain communication with the MQTT agent
(usually an MQTT server) to handle message subscriptions and publications in real-time. To achieve this
purpose, the MQTT client needs to run a loop in a separate thread, typically starting the loop imme-
diately after completing the connection operation. This ensures that the client can receive and process
MQTT Broker-sent messages in real-time. ‘mgtt_client.loop_start()’ method started a MQTT client’s
loop in a new thread. This loop ran in the background and did not block the execution of the main thread,
allowing the MQTT client to process other operations simultaneously;

f) publishing prediction result to designated topic

Project code as: mgqtt_client.publish(topic, prediction)

4. Displaying results:

a) client page. The client page realized by Java in this project was shown in Fig. 3, it can be seen
that participants can choose from three functions: “record your voice”, “speech to text” and “predic-
tion”, of which, speech to text is an example of data preprocessing methods, developers can supplement
or modify this function according to the actual design requirements. After the participant has recorded
his/her voice message to the cell phone, the cell phone will save the voice message and carry out the data
preprocessing and feature extraction operation, when the participant triggered the “prediction” function,
the cell phone as a client sent the corresponding feature file to the server. After received the prediction
result from the server or EMQX Broker, the cell phone parsed it and displayed the result on the page,
as shown in the figure;

111

Joknager BI'YUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

For Alzheimer's disease recognition

rd your voic
Speech to Text

Your Prediction resut: {"The probability of
having Alzheimer's disease is"'16.83%'

Fig. 3. Client-side page display

b) EMQX Broker page. The page of the EMQX Broker after being successfully connected by devi-
ces was shown in Fig. 4. It can be seen that there were 2 devices connected to the broker, in this project
implementation, the cell phone and the MQTTX client, with the number of subscribed topics being 1;

All Live Topics Subscriptions
Connections Connections
1 1

2 2

Node Information

Node Name: emgx@172.17.0.2 Node Role: core
Uptime: 1 hour 23 minutes 14 seconds Version: ¢

Connections: 2 File'D_escriptors 1048576
Limit:
Subscriptions: 1
0S CPU Load: 0/0.01/0.01

Topics: 1

0S Memory: §

Fig. 4. EMQX

c) MQTTX page. Since in this project, the predicted result that displayed on the mobile phone
page was parsed from the HTTP response. To examine the feasibility of distributing the prediction re-
sults using the EMQX Broker, the authors used MQTTX to simulate a new client, whose page display
was shown in Fig. 5. MQTTX is an open source, cross-platform MQTT 5.0 client tool built on Electron,
which is primarily used for debugging and testing MQTT communication. As can be seen from the fi-
gure, after subscribed to the topic “/flask/predict”’, MQTTX, as another client, received the prediction
results transmitted via the MQTT protocol.

2023-07-22 12:50:08:467

Topic: /flask/predict QoS: 0
16.83%

2023-07-22 12:50:43:852

Payload: JSON v | QoS: 0V) Retain Meta

[flask/predict

Fig. 5. MQTTX

112

Joknager BI'YUP Dokrapy BGUIR
T.22, Ne 4 (2024) V.22, No 4 (2024)

Conclusion

1. The article presents the model and structure of the Internet of things network, which are de-
signed to determine the presence of Alzheimer’s disease in patients, using the author’s developments
in the technology of IT diagnostics of this disease. An instance of the network project was created
using the Flask framework, described how to create a WSGI application from app.py to process client
requests. The process of using the app.route decorator method of an instance of the Flask program
to create viewing functions that are performed when accessing routes was explained, thus, business
logic was implemented for fart information and result display functions.

2. It also describes how to use the JSONIFY function to return data in JSON format to the client
based on a call to the view function. It explains how to start the Flask web application service using
the app.run() method. To expand the scope of providing prediction results, the EMQX Broker was used
to facilitate data transmission over the MQTT protocol. The layout of the client page of this project
was developed using Java, which included displaying the prediction results of Alzheimer’s disease
on smartphones of a patient and a doctor.

References

1. Dong L. (2023) Application of Internet of Things Technology in Hospital Information Construction. Shihezi
Science and Technology. (3), 77-78.

2. Vishniakou U. A. (2023) Specialised IoT Systems: Models, Structures, Algorithms, Hardware, Software Tools.
Minsk: Belarusian State University of Informatics and Radioelectronics.

3. Vishniakou U. A., Chuyue Yu. (2023) Using Machine Learning for Recognition of Alzheimer’s Disease Based
on Transcription Information. Doklady BGUIR. 21 (6), 106—112. http://dx.doi.org/10.35596/1729-7648-2023-
21-6-106-112.

4. Jiafa C., Yujing H. (2022) Application of Flask Framework in Data Visualization. Fujian Computer. 38 (12),
44-48.

5. Grinberg M. (2018) Flask Web Development: Developing Web Applications with Python. O’Reilly
Media, Inc.

Authors’ contribution
All authors have equally contributed to writing the article.

Information about the authors

Vishniakou U. A., Dr. of Sci. (Tech.), Professor at the Department of Infocommunication Technologies, Belaru-
sian State University of Informatics and Radioelectronics (BSUIR)

Chuyue Yu, Postgraduate at the Department of Infocommunication Technologies, BSUIR
Address for correspondence

220013, Republic of Belarus,
Minsk, P. Brovki St., 6

Belarusian State University

of Informatics and Radioelectronics
Tel.: +375 44 486-71-82

E-mail: vish@bsuir.by

Vishniakou Uladzimir Anatol’evich

113

