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Abstract. An analysis of methods for processing data from gait deceleration sensors for detecting Parkinson’s
disease and a description of the development of a Parkinson’s recognition system based on neural networks with
long short term memory (LSTM) are performed. The data used was a publicly available dataset of gait dece-
leration scores of patients with Parkinson’s disease, obtained using three wearable sensors to collect data from
different parts of the body. The research was carried out using machine learning using an LSTM neural network.
First, the DAPHNet datasets were segmented using a fixed sliding window algorithm. The wavelet algorithm was
then used to extract features from the data set: wavelet entropy and energy, wavelet waveform length, variance
and standard deviation of wavelet coefficient. Next, a data enhancement algorithm was used to balance the number
of samples in the data sets. To train the model, an LSTM neural network was built with a six-layer network struc-
ture: input layer, LSTM layer, reLU layer, fully connected layer, Softmax layer and output layer. After training
the model for 1000 iterations, the LSTM neural network algorithm achieved 96.3 % accuracy, 96.05 % precision,
96.5 % sensitivity, and 96.24 % average F1 score for recognizing Parkinson’s disease based on test datasets. Si-
milar studies conducted by other scientific organizations achieved a maximum accuracy of 91.9 % for the same
data sets.

Keywords: deep learning, acceleration sensor, time series data, long short term memory neural network, wavelet
feature.
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IT-TUATHOCTHUKA BOJIE3HU MAPKUHCOHA,
OCHOBAHHASI HA AHAJIN3E 3AMEJIJIEHUSI IBUKEHUM ITALIMEHTA
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AHHOTanusl. BeINMONHEHBI aHAIN3 METOZOB 00PabOTKN JaHHBIX AATYMKOB 3aMEJICHUS TIOXOKH JIUIS BBISIBICHUS
6one3nn [lapknHCOHA M ommcaHWe Pa3pabOTKM CHCTEMbI pacro3HaBaHMs [lapkuHCOHA Ha OCHOBE HEHPOHHBIX
ceTell ¢ J0JITOBpeMEHHOM KparkoBpeMeHHOH mamsTbio (LSTM). Hcnonb3yeMble gaHHbBIE MPEACTaBIUIN oO1Ie-
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JIOCTYIHBIE HAOOPHI OKa3aTeIeH 3aMeUICHHs TIOXOIKH MTAIINEHTOB ¢ Ooe3Hblo [lapknHCOHA, MOyYeHHBIX C MO-
MOIIBIO TPEX HOCHMBIX JIATYMKOB JUIsi cOOpa JIaHHBIX C Pa3JIMYHBIX yacTeil Tena. MccnemoBanust poBOANIN MO-
CPEJICTBOM MAIIMHHOTO 00y4YeHus ¢ MpuMeHeHneM HelipoHHoi cetn LSTM. CHavana Habops! nanabix DAPHNet
CETMEHTHPOBAIIN C TIOMOIIBIO ANTOPUTMa (PUKCHPOBAHHOTO CKOJB3SIIETO OKHA. 3aT€M aJITOPUTM BeiBIIETa MpH-
MEHSIJIH JUIsl M3BJICYCHHMS TPU3HAKOB M3 HaOopa JaHHBIX: SHTPOIIMU U DHEPTUU BeiBIIeTa, [UIMHBI (HOPMBI BEliB-
JeT-CUI'HaJIa, UCHEPCUH M CTaHAAPTHOTO OTKIOHEHHs BeiBieT-kod(dduiuenrta. Jlanee anroputM yaydIlieHHS
JIAaHHBIX HCIIONIB30BANICS JJIsi OAaHCHPOBKHM KOJIMYECTBA BHIOOPOK B HaOOpax MaHHBIX. st 0OydeHMs Monenu
Obuta octpoeHa HeliponHas cetb LSTM ¢ mecTucnoiiHol ceTeBoi cTpyKTypoOii: BXOAHOI cioif, cioit LSTM,
cioii reLU, MOMHOCThIO TIOAKITIOUEHHBIN CI0i, coil Softmax u BeIxomHO# cioi. [Tociie 00ydeHus Moienu B Te-
yenne 1000 urepanuii anroputm HeviponHoi cetu LSTM npoctur 96,3 % tounocth, 96,05 % npenusnoHHOCTH,
96,5 % uyBcTBUTENBLHOCTH M 96,24 % cpennero 3Hadenus F1 jist pacioznaBanus 0osne3nn [lapkrHcoHa Ha OCHO-
BE€ TECTOBBIX HAOOPOB JAaHHBIX. AHAJIOTHYHbIE HCCIIEIOBAHNS, IIPOBEICHHbBIE JPYITMMHU HAYYHBIMU OpraHU3alys-
MH, TTO3BOJIIIIN TOCTHYh MAKCUMAaIBHON TodHOCTH 91,9 % mist Tex e HabopoB TaHHBIX.

KiroueBrbie ciioBa: FHy60K0€ 06yquI/Ie, JAaTYUK YCKOPCHU, JaHHBIC BPCMCHHBIX PAA0B, HeﬁpOHHaﬂ CCThb C AJIU-
TEJIbHOI KpaTKOBpeMeHHOﬁ naMATbIO, BeﬁBJ’IeT-(i)yHKHHS[.

KonpaukT HHTEpecoB. ABTOPHI 3asBJIAIOT 00 OTCYTCTBHH KOH(IMKTA HHTEPECOB.
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Introduction

Parkinson’s disease [1] is a chronic neurodegenerative disease in which patients may present
with a variety of clinical manifestations including resting tremor, muscle tonus, and bradykinesia. Free-
zing of gait (FoQG) is defined as a brief, sudden suspension or significant reduction in the patient’s pace
when attempting to walk or in the process of moving forward. It usually lasts for a few seconds, and oc-
casionally for up to 30 s. In the most severe cases, FoG can occur at any time when the patient is wal-
king, and is accompanied by a certain degree of leg tremors.

FoG [2] often occurs when starting, turning or passing through narrow aisles or doors, and is more
likely to occur when patients are stressed. 81 % of patients develop FoG after 20 years of disease,
and it becomes more frequent as the disease progresses. The patient’s quality of life decreases drama-
tically. Therefore, one of the main goals of Parkinson’s disease treatment is to recognize FoG behavior
and then use medical treatment to improve patient condition with Parkinson’s disease.

The new approach to human gait recognition is proposed, based on the quarterly deviation of the nor-
mal distribution to determine the state of human movement and on a Bayesian model with binomial
distribution to identify signs and select the best ones [3]. To realize FoG detection with high perfor-
mance [4] the methods to build FoG detection models using deep convolutional and recurrent networks
were proposed. These alarming figures make Parkinson’s disease an important focus of attention. In [5]
presented contributions that suggest wavelet techniques as a useful tool to perform a gait and arm swing
analysis; this represents an important approximation that can contribute to describe and differentiate
people with Parkinson’s disease in early stages of the disease. In [6] authors proposed a novel intelligent
Parkinson detection system based on deep learning techniques to analyze gait information. In [7] pre-
sented continuous monitoring activity of daily living (ADLs) and classification freezing of gait episodes
using Wi-Fi and radar imaging. The objective of [8] was to test the success of the data set obtained
by a wearable health assistant developed for the symptom of freezing in gait of Parkinson’s patients
and to increase the success of the system. In [9] aimed to identify trends, challenges and opportunities
in the development of FoG detection and prediction systems. Inspired by state-of-art deep learning tech-
niques [10] aimed to improve the detection model by proposing a feature learning deep denoising auto
encoder to learn the salient characteristics of Parkinsonian gait data that is applicable to different wal-
king styles for the elimination of manually handcrafted features. The proposed model achieved a gene-
ralization accuracy of 89.2 % and a geometric mean of 88.8 % [11]. The growing popularity and success
of Transformer networks in natural language processing and image recognition motivated the authors
to develop a novel method for the problem based on an automatic features extraction via Transformers.
The use of Transformers in 1D signal is not really widespread yet, but in [12] shown that they are effec-
tive in extracting relevant features from 1D signals. This work used the LSTM neural network algorithm
to recognize the FoG in Parkinson’s disease.
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Methodology

In this paper, the model is trained and tested on the DAPHNet datasets. The issue of gait freezing
in Parkinson’s disease was studied in a study by [13]. The dataset was recorded in the lab with emphasis
on generating many freeze events. Users performed three kinds of tasks: straight line walking, walking
with numerous turns, and finally a more realistic ADL task, where users went into different rooms while
fetching coffee, opening doors, etc. The dataset comprises 3 wearable wireless acceleration sensors —
recording 3D acceleration at 64 Hz. The sensors are placed at the ankle (shank), on the thigh just above
the knee, and on the hip. The Fig. 1 shows the position of the sensor on the experimenter.

earphones
-

Fig. 1. The position of the sensor on the experimenter

These datasets are multivariate time series datasets. There many records in total, each records con-
tains 1 time stamp, 9 acceleration (each sensor has x, y, z axis acceleration) and 1 label. The data used
in this work has a total of 1 917 887 data records, but it only contains 237 FoG events. The FoG duration
is very short, so the number of FoG records is far less than the number of non-FoG records in the data-
sets, so the datasets have a serious data imbalance problem. There are two ways to deal with the data
imbalance, the one is to overcome the imbalance of sample size at the sample level, for example, to re-
duce or increase the sample size of one type in the classification by oversampling and under sampling,
so as to achieve the sample balance. The another one is to overcome the imbalance of sample size
at the level of model algorithm, such as assigning higher weights to a few classes by using the class
weights parameter. In this work, the new approach was to first extract features from the original dataset
and then randomly reduce the number of non-FoG feature data samples to achieve a 1:1 ratio between
the number of feature data of the two classes in the dataset.

The original data is a continuous stream of time series data, so the features cannot be extracted direc-
tly and the data needs to be segmented. In the current research work, action data segmentation algorithm
generally uses a sliding window with fixed window size. In this work, window length is 32, the over-
lap coverage is 50 %, and the window period is 0.5 s. Since the FoG signal is a non-stationary signal,
the relevant statistical features, such as maximum, minimum and average, are directly extracted, which
do not show the actual characteristics of the FoG signal. However, the transformation of the FoG sig-
nal is slow and can be considered as short-time smooth, which means it is smooth in a short period
of time (20-30 ms), so it is more appropriate to use the wavelet transform method to extract the features
of the signal.

The method used for this experiment is to decompose four layers of wavelet coefficients using
db6 wavelet, and then calculate the statistical features of each layer of wavelet coefficients. Five wave-
let features are extracted from each layer of wavelet coefficients, and they are wavelet entropy, wavelet
energy, wavelet waveform length, wavelet coefficient variance, and wavelet coefficient standard devia-
tion. There are three axes on each sensor, so there are 75 wavelet features in total.

Long short term memory (LSTM) network [14] is a modified recurrent neural network, mainly
by introducing a gating mechanism to control the accumulation rate of information, including selec-
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tively adding new information and selectively forgetting previously accumulated information, thus im-
proving the long-range dependency problem of recurrent neural networks (RNNs) and alleviating the
gradient disappearance problem during the training of long sequences. The idea of LSTM is that the hid-
den layer of the original RNNs has only one state, which cannot handle long-range data. So the LSTM
adds a storage unit to store the long-term state, called cell state. Finally, a gate unit is added to control
the input, output or forgetting of information. The Fig. 2 shows the structure of LSTM neural networks.
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Input gate Output gate

Forget gate
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Fig. 2. The structure of long short-term memory neural networks

Three gates are placed in a cell, called the input gate, the forget gate and the output gate. A message
enters the LSTM network and can be judged as useful or not according to the rules. Only information
that meets the algorithm’s certification is left behind, while information that does not meet the criteria
is forgotten through the forgetting gate. The function of the three LSTM gates:

1) forgetting gate: determines how much information needs to be forgotten in the previous moment’s
memory cell state and how much information is retained in the current memory cell state;

2) input gate controls information which should be added to the current memory cell state;

3) output gate controls information from the current memory cell state should be output.

This work is conducted under the widows 11 platform, with MATLAB R2022b software under
17-10750H CPU. MATLAB is a combination of the word’s matrix laboratory, which is a high-tech com-
puting environment for scientific computing, visualization and interactive programming. It integrates
many powerful functions such as numerical analysis, matrix computation, visualization of scientific
data, and modeling and simulation of nonlinear dynamic systems in an easy-to-use window environ-
ment, providing a comprehensive solution for scientific research, engineering design, and many scien-
tific fields where effective numerical computation must be performed, and largely free from the editing
mode of traditional non-interactive programming languages. The following are the main MATLAB tool-
boxes that are used in the work.

1. Classification learner toolbox. This toolbox is integrated with machine learning algorithms, we use
the machine learning algorithms contained in it to do experiments to compare the effect of LSTM algo-
rithm.

2. Deep network designer toolbox. This toolbox provides a visual way to build a network model,
we use this toolbox to build LSTM neural network model.

Experiments and results

Since the data in the publicly available DAPHNet dataset was labeled, the experiments conducted
in this work were limited to studying the results of binary classification. The steps of this experiment
were as follows.

1. The data were cleaned and the abnormal data and missing data were removed.

2. Executed segmenting the data through a time window of size 32, with an overlap of 50 %.

3. Executed extracting features from the data in each window. The authors used db6 wavelet to de-
compose four layers of wavelet coefficients, and then calculated the statistical features of each layer
of wavelet coefficients. Five wavelet features were extracted from each layer of wavelet coefficients:
wavelet entropy, wavelet energy, wavelet waveform length, wavelet coefficient variance and wavelet co-
efficient standard deviation. There are three axes on each sensor, so there are 75 wavelet features in total.
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4. The data augmentation method was used to equalize the amount of data in both categories
in the datasets.

5. The feature datasets were divided into training datasets and testing datasets according to 9:1.

6. The training datasets were inputted into the LSTM model for 1000 epochs to optimize
the LSTM model, and the fivefold cross-validation method was used.

7. The recognition accuracy of the LSTM model was tested on the testing datasets.

The Fig. 3 illustrates the process of training and testing the dataset in this experiment.
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Fig. 3. The process of training and testing the dataset in this experiment

The LSTM neural network in this work had a total of six layers and 1.9K learnable properties.
The Fig. 4 illustrates the structure of the LSTM neural network.

Name Type Activations Learnable Properties States
1 | sequenceinput Sequence Input 75(C) x 1(B) x 1(T)| — -
Sequence input with 75 dimensions
2 |lIstm LSTM 6(C) x 1(B) InputWeights 24 x 75 HiddenState 6 x 1
LSTM with 6 hidden units RecurrentWeights 24 x 6 CellState 6x1
Bias 24 x 1
3 |relu RelLU 6(C) x 1(B) - -
RelLU
4 |fc Fully Connected 2(C) x 1(B) Weights 2 x 6 -
2 fully connected layer Bias 2x1
5 | softmax Softmax 2(C) x 1(B) - -
softmax
6 | classoutput Classification Output | 2(C) x 1(B) - -
crossentropyex with dasses '1" and '2'

Fig. 4. The structure of long short term memory neural networks

The Tab. 1 showes the LSTM neural network model hyperparameter setting table in this experiment.
The Fig. 5 showed the process of training the LSTM model in 1000 epochs.

Table 1. Long short term memory neural network model hyperparameter setting table in this experiment

Number Parameter name Parameter value
1 MiniBatchSize 64
2 MaxEpochs 1000
3 InitialLearnRate 0.01
4 LearnRateDropFactor 0.10
5 LearnRateDropPeriod 700
6 Shuffle Every-epoch
7 Optimization Adam
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Fig. 5. The process of training the long short-term memory model in 1000 epochs

As can be seen in Fig. 5, after entering training datasets into the model and completing 1000 training
periods, the LSTM model converged (losses assumed the same value). The Fig. 6 showed comparison
of prediction results for the training and testing datasets. The accuracy of the LSTM model was 96.29 %
for the testing datasets and 97.13 % for the training datasets. The accuracy of the testing datasets were
lower than the accuracy of the training datasets by 0.84 %, which meant that the model was not over fitted.
The Fig. 7 shows confusion matrix of training and testing datasets.
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Fig. 6. Comparison of forecasting results for data sets: a — training; b — test
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Fig. 7. Confusion matrix of data sets: a — training; b — test
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The categories were distributed equally in the training and testing datasets, as it can be seen in Fig. 7.
The confusion matrix was used to calculate various performance metrics for the classification problem,
including sensitivity, accuracy and F1 score for a particular category. The Tab. 2 shows the experimental
results of Parkinson’s disease recognition based on test datasets using LSTM.

Table 2. The experimental results of Parkinson’s disease recognition based on test datasets
using long short term memory

Dataset Average precision, % | Average sensitivity, % | Average F1 score, % Test accuracy, %

DAPHNet 96.05 96.50 96.24 96.30

In summary, the accuracy of the LSTM-based Parkinson’s disease model could reach 96.3 % on the
test dataset and 97.13 % on the training dataset. On the testing datasets, the average accuracy was
96.05 %, the average sensitivity was 96.50 %, and the average F1 score was 96.24 %. This experimental
result showed that the recognition of Parkinson’s disease using LSTM algorithm based on FoG data was ef-
fective. The test accuracy of this study and existing studies on the same datasets are compared in the Tab. 3.

Table 3. Compare with others’ research

Dataset Researcher Research methods Test accuracy, %
DAPHNet [15] Deep convolutional neural networks with five-layer CNN 80.7
DAPHNet [16] LSTM based on the unprocessed datasets 83.4
DAPHNet [17] Improved DL neural networks model 91.9
DAPHNet [16] SVM 79.5
DAPHNet | The proposed | LSTM based on the wavelet features datasets 96.3

The Tab. 3 shows that the LSTM based on the wavelet features datasets had the highest test accuracy
with 96.3 % for the same datasets.

Conclusion

1. The article presents the state of the art of the most relevant freezing of gait recognition systems
in Parkinson’s disease and discusses their results. Using the sliding fixed window algorithm, data seg-
mentation was applied to the public dataset, and then from the windowed data, we extracted five types
of wavelet features: wavelet entropy, wavelet energy, wavelet waveform length, wavelet coefficient vari-
ance and wavelet coefficient standard deviation. The data Augmentation algorithm was used to balance
the number of classes in the extracted feature datasets. Datasets of objects were used in long short term
memory neural network model, and the model had a six-layer network structure.

2. Based on the DAPHNet datasets of patients for IT diagnostics of Parkinson’s disease, the recog-
nition accuracy for the long short term memory algorithm reached 96.3 %. Our results of IT diagnostics
of Parkinson’s disease were compared with the known results of other researchers, the best of which
are 91.9 %.
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