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Abstract. The statement of the problem of the dual control of the regression object with multidimensional-matrix
input and output variables and dynamic programming functional equations for its solution are given. The problem
of the dual stabilization of the regression object at the given level is considered. The purpose of control is reaching
the given value of the output variable by sequential control actions in production operation mode. In order to solve
the problem, the regression function of the object is supposed to be affine in input variables, and the inner noise
is supposed to be Gaussian. The sequential solution of the functional dynamic programming equations is per-
formed. As a result, the optimal control action at the last control step is obtained. It is shown also that the obtaining
of the optimal control actions at the other control steps is connected with big difficulties and impossible both ana-
lytically and numerically. The control action obtained at the last control step is proposed to be used at the arbitrary
control step. This control action is called the control action with passive information accumulation. The dual
control algorithm with passive information accumulation was programmed for numerical calculations and tested
for a number of objects. It showed acceptable results for the practice. The advantages of the developed algorithm
are theoretical and algorithmical generality.
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AYAJIBHAS CTABUJIM3ALIUA
MHOI'OMEPHOI'O PETPECCHUOHHOI'O OFbEKTA HA 3AJAHHOM YPOBHE

B.C. MYXA, H. ®. KAKO

benopyccruii 2cocyoapcmeennuiil ynugepcumenm un@OpMamuxi u paouodieKmpoHuKy
(2. Munck, Pecnybnuxa benapycsy)

Tocmynuna 6 pedaxyuro 09.12.2022

AnHoTanust. [IpuBoisATCS MOCTAaHOBKA 331a4H AyaJbHOTO YIIPABICHHUS PETPECCHOHHBIM 00OBEKTOM ¢ MHOTOMEp-
HO-MaTPUYHBIMH BXOTHOHM U BBIXOJHOW NEPEMEHHBIMH U (JyHKIIMOHAIILHbBIE YPaBHEHUS AMHAMUYECKOT'O IIPOTpaMm-
MHpPOBaHHMSA IJIs ee pelleHust. PaccmarpuBaeTcs 3ajada AyalbHOM cTaOMIN3anuyu 0ObEKTa Ha 3aJaHHOM ypPOBHE.
Henpro ynpaBneHus SBIACTCS BBIBOJ BBIXOIHOW MEPEMEHHONW 00bekTa Ha TpeOyeMBblil YPOBCHD U MOICPKaHIEC
€€ Ha 9TOM YPOBHE C IOMOIIBIO MOCJIEA0BATENbHBIX YIPABISIOMINX BO3JEHCTBUI B PeXHUME HOPMAIBHOM JKC-
ruryaraiuu. Jist pemennst 3agaun GyHKIMST PErpeccud 00beKTa anmnpoKCUMUpyeTcs: ad(UHHON MO BXOAHOMY
BO3ICUCTBHUIO (PYHKIHEH, a BHYTPEHHHUN IIIyM 00BEKTa MPEATonaraeTcs aifuTUBHEIM ['ayccoBCcknM. BrimonHeHO
oCJIeI0BaTeNIbHOE pelieHre (DYHKIIMOHAIBHBIX ypaBHEHUH JTMHAMHUYECKOTO IPOrPaMMHUPOBAHMS, B PE3yJbTaTe
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YCro MOJYUCHO YHIPABJIAIOLICC BOB,Z[eﬁCTBHe Ha MOCJICAHEM Iare yrnpaBJICHUA. HOKaBaHO, YTO OTBICKAHHC YIIpaB-
JIAOIICTO BO3H6ﬁCTBHH Ha Apyrux marax yrpaBJICHUS CBSI3aHO C OOJILLINMHU TPYAHOCTSAMHU U HEBBLIIIOJITHUMO KaK
AHAJIUTUYCCKN, TaK U YHUCJICHHO. VnpaBn}Homee BOSHCﬁCTBHe, IMOJIYYCHHOC Ha MOCJICAHEM IOare, npeaiaractcs
HCII0JIb30BaTh HA JIIOOOM IIare yYHpaBJICHUA. Taxoi AJITOPUTM HA3BAH AJITOPUTMOM AYyaJIbHOI'O YIPaBJICHUS C IacC-
CHUBHBIM HaAKOIIJICHUCM I/IH(l)OpMaHI/II/I. OToT AJITOPUTM 3aliporpaMMUpOBaH U1 YUCJICHHBIX paCuCTOB, anpo61/1po-
BaH Ha pAaeC 00BEKTOB U TOKa3all IPUEMIIEMBIC U1 IPAKTUKU PE3YJIbTaThl. Baxxapim JOCTOUMHCTBOM aJIrOpUTMa
ABJIACTCA €T0 TCOPCTUYICCKAA U aJITOPUTMUYCCKAs 06H.IHOCTL.

KiaroueBrbie cioBa: AYyaJIbHOC YIIPABJICHUC, MHOFOMepHO-ManPI‘IHLII;’I peI‘peCCI/IOHHHf/’I O6I>GKT, JUHAMHUYCCKOEC
nporpaMMupOBaHUE, ITACCUBHOC HAKOIIJICHUE I/IH(I)OpMaHI/II/I.

KonpaukT uHTEepecoB. ABTOPHI 3asBJIAIOT 00 OTCYTCTBHH KOH(IMKTA HHTEPECOB.

Js uutuposanusi. Myxa, B. C. JlyanbHast crabuin3arysi MHOTOMEPHOTO PErPECCHOHHOTO 00BEKTAa Ha 3aIaHHOM
ypoese / B. C. Myxa, H. ®. Kaxko // Hoxnanst BIYUP. 2023. T. 21, Ne 2. C. 58—67. http://dx.doi.org/10.35596/1729-
7648-2023-21-2-58-67.

Introduction

The problem of the dual control of the multidimensional regression object is formulated as fol-
lows [1-5]. The control system with controlled object O, controller C, feedback path and driving ac-

tion g, is considered (Fig. 1).
e

8
;> U:> Y

Yy C O T

Fig. 1. To the statement of the dual control problem

The controlled object O is described at the instant of time s by the probability density function
va (ys’®5Us)5 §= 0, 1, 2, e n,

where Y, =(Y, ;, . ) is the p-dimensional matrix of the output of the object at the instant of time s;
U, =, o ) 1s the g-dimensional matrix of the input of the object at the instant of time s (control
action); ® ={0,,...,0,,} is a set of the parameters of the controlled object consisting of the random multi-
dimensional matrices ©,,...,0, with known priory joint probability density function fg ,(0) .

We will call the set @ ={0,,...,0,} a generalized parameter of the object O. It is supposed,
that the generalized parameter ® takes constant value for all of the instants of time s=0,1, ..., n.
The driving action g; is supposed to be known deterministic multidimensional-matrix sequence.

The quality of the functioning of the system at each instant of time s is estimated by a specific loss
function W (Y,,g,), depending of output Y, and, might, driving action g,. A system, for which the total

s

for n+1 instants of time total average risk

R {300 - 3R = B0 (1) M

5=0 5=0
is minimal, is called optimal system.

There E(-) means the mathematical expectation, R, = E(W,(Y,,g,)) is a specific risk. The control
action U, belongs to some permissible area. The controller C uses all of the past information in the form
of observations #,_; = (U, u;,....u;_;), Y,y =(¥y>V»--»¥,_1) of the input and output values of the object
to determine the control action u at the instant of time s.

The task consists of determining the strategies of the controller C, i. e. sequence of the conditional
probability density functions fy, (u, /4, ,p,),i=0,1, ..., n, for which the total average risk R (1)
is minimal.

59



Jloknager BI'YUP Dokrapy BGUIR
T.21, Ne 2 (2023) V.21, No 2 (2023)

As it is known [2-5], the optimal strategies of the controller C are not randomized, i. e. the control
actions U, are not random and will be denoted u,. In this conditions the controller C will be described
by condltlonal probability density function fY (v, / 0, u ), where u; is the fixed value of the variable Uj.
We will use the following simplified notation: fg ,(8) = 7,(6), fy (y,/6,u ) Sy, /6,u,).

The optimal control algorithm, i. e. the sequence of the control actions u, ., U, 1s determined

n 150
in pointed inverse order from the following functional equations:
0, min g, (ii,, ¥, ); 2
fn( n—1 n ynl) unGU(pn( n yn—l) ()

* _ * -
f;t—m (un—m—l > unfm b yn—m—l ) =

- mll'l (Pn -m ( n m?> j}n—m—l ) + j fn*—erl (ﬁnfm 7u:7m+1 7j}n—m )f(yn—m / ﬁn—m ’yn—m—l )dQ b

unfm
Q)

m=12,..,n, 3)

where ¢, is determined by expression

(Ps (ﬁs’j}s—l): J. Wv (ys’gs)f(ys /ﬁs’j}s—l)dga §= O: seey n: (4)
Q)
in which ’
(i 3)= [ (v, 0.u,) £,(0)de; (5)
Q(0)
s=1
LOLT/ (v /0.,
/(0) = = ; (6)
[ £OLTf (. /0,,)d0
Q(6) v=0
and u, ., is optimal control action for the instant of time (12— m +1).

Note. The notation mig ¢,(,,y,_,) means the following:
u, €

min(pn (ﬁn’j}n—l ) = (Pn (un’ﬁn—l’j/n—l )
u, el

Stabilization of the object at the given level

We will consider the task of reaching the required value of the regression function by sequential
control actions in production operation mode and stabilization of the regression function at this level.
The task is formulated in this case as follows.

The controlled object is described at the s-th instant of time by Gaussian probability density function

fy (v, / Coug)=N(y(Cou,).dy), (7

where y(C,u,) is a regression function; d, is a variance-covariance matrix of the inner noise;
u, 1s a g-dimensional matrix; y, is a p-dimensional matrix; C is a generalized parameter of the object.

Note, that we denote now the geleralized prameter C instead of 0 in expresions (5), (6). Let us ap-
proximate the regression function by affine function:

y=w(€)=Cy+"(Cu)=C, + " (uC,) =¥(C), ®)
0,ig i 0,iq i
or y=p(©)=Y (Cau ):Z («'C)=w(C), m=1,
i=0 i=0
where C,, k=0,m, are kg-dimensional random matrices C,, =(C, )B"*’“f*q; C, =(Ct,k)H‘”’“7‘kq , and

H , orgs Bpirgsg are the transpose substitutions of the type “back™ and “onward” respectively (in the

article, the multidimensional-matrix notation is used [6]).
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Let us combine the matrices C, into a one-dimensional cell C={C,}, k=0,1. Provided the
regression function (8), the probability density function of the object (7) take the following form:

0,p 2
1 1 - & 0,ig (i
f(yn /C,,un)=mexp D [dyl[yn _Z(;O’q(”ncz,i)j J > €))
Y =

where k, is the number of the elements of the matrix y,.
For the task of the object stabilization at the level g we choose the loss function in the form

of W(¥,)=||Y, - g >, where ||| is the Euclidean norm of a multidimensional matrix.

Let the random cell C,={C,,}, k=0,m, has the Gaussian priory probability denity function
described by the following expresion [7]:

i=0 j=0
=M, exp{—%iioq’(qu(ct,idéjf)ctj)+ii ! (Oq(c d’/)vL,J)
i=0 j=0 i=0 j=0
_lz'”: L an/(o,q,»(vc ,dé])vc j)}’ M, :;’ q,=p+iq, i=0.m,
2 i=0 j=0 ” ! (271_);1(. |dC/ |

where the two-dimensional cell d, ={d,. ; ;} (i, Jj= O,_m) is the variance-covriance cell of the random
cell G, [7]; d, ,, = E(O’O ((C;,i A (O _Vc,,j))) is the ((ig + p) + (jg + p))-dimensional matrix;

d;,l = {dir’j} (i,j = O,_m) is the cell invere to the cell dc,; v, = {vc,,O’Vc,,l’ ...,vc”m} = {vw.} (i,j = O,_m)
is the one-dimensional cell of the mathematical expectation of the random cell C,; (v, ; = E(C, ;) is the
(iq + p)-dimensional matrix); », is the number of the scalar elements of the cell c,.

The calculation of the control actions u,,u,_,,...,u, is connected with the formulae (2)—(6).

1. The posterior probability density function f,(c) (6) is defined by the expression [7]:

R ey et S| O

TC y

inwhich D, ={D, -},
o ={p) =t e, )={a o (Vs ) |0 a
B={B)}= io ‘””(dlfv )+ 0’p(d;15yui )T} i=0,m; (12)
j=0
N, ={N, }=""{D,B) :{i " (p,, ij)}, i=0,m; (13)
j=0
S = an1 i (uﬁuﬁ), Syux = $r o0 (y”uﬁ); (14)
p=l =l
Yt :(y]’y2""’yn—l); U, :(uI’MZ"“’un—l); U, =,y ).

The substitutions of transpose 7, ; in (11) and 7; in (12) have the following forms:

TT: 5 Xj .7 5.7"u, J— lT’T,.
Ti,j llIQ—— - = = j—, s 1, ] =0,m; T; 12_ E i=0,m,
A u’llal’z’ Jl ] e Mallaba l

where the multi-indexes J;, s, ;4> bs--rJ;, containby g indexes and the multi-indexes A, i contain
by p indexes.
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There are no multi-indexes A, fi in these substitutions in the case of p =0, and substitutions T, T,
in this case are identical [6].

The two-dimensional cell D;l = {Dét’j boiLj= O,_m, (11) has the same dimension as the two-dimen-
sional cell D, ={D, ; ;}, 1. e. Di:j is the ((ig+ p)+(jq + p))-dimensional matrix. The element B,
of the one-dimensional cell B={B}, i = 0,m, (12) is the (ig + p)-dimensional matrix.

It is of interest in dual control to use the single measurements for updating the estimations (10)—(14).
We will have for this the expressions Sufu? = 00 (uf”) , Sysuz‘ =09( ysu?) , determined by single measure-

ment (u,,y,), instead of the expressions (14).
2. Let us find the probability density function f(y,/,,y, ) by the formula (5)

Sl 3,0)= [ £ eou,) 1, (c)dQ, (15)

Q(C)

where f,(c,) is determined by the formula (10).

We will use for this the following theorem from [7].

Theorem (total probability formula for the joint Gaussian distribution of the multidimensional
random matrices). Let E={5,}, i=12,...,m', be an one-dimensional random cell, composed
of the g;-dimensional matrices =,, k; the number of the scalar components of the matrix =, f(§)
the probability density function of the cell =, k- =k, + k, +...+ k,, the number of the scalar components
of the cell =, f(y/&) the condition probability density function of a p-dimensional matrix Y, k,

the number of the scalar components of the matrix ¥, E** the k. -dimensional Euclidean space.
If in the total probability formula

= F(yre)f@ade (16)

Ef=

the conditional probability density function f(y /&) has the following form

O.p , 2
1 1 . < 0.,
/€)= —F——— - |dy | y-2 " (hE ’ 17
f(y/e) ,7(2n)ky|dy|exp 5 ( (y 21 ( é';)N (17)

where 4. is a (p+gq,)-dimensional matrix, allowing the multiplication 04 (h&,), and the probability
density function f(§) has the following form

R e e R CRM RS

then the integral (16) (the total probability formula) is defined by the following expression:

0,p , 2
1 1 S
- / de=———exp| —= | D}'| y=Y % (hv2,)| ||, 18
10)= [ 10/0f @Ot =meerp) { (y 2.0 (kv )U (s)
where D, d+zz (Oql( _lj)h)

-1 j=1

Let us replace § by ¢, and f(&) by f,(c,) (10) in this theorem and compare the expression (9)
with the expression (17) from theorem. We realize that p, =ig, h, = u;. In accordance with formula (18)
of the theorem we obtain the following expression for the integral (15):

I 1 19 _
f(yn/un,y,71 E_[Lf v, /e, u, (Ct)dCt:meXp[_E "(Dyl(yn_]vy)2)j’ (19)
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where

m I 0.jq (o ,iq . .
Dy=dy+Y Y ( (u;DC/,i,j)uj); (20)
i=0 j=0
™ 0,ig i
Ny =Y (4N, ;) 1)
i=0
The matrices D, ; ; and N, ; in (20), (21) are defined by the expressions (11), (13).
The further calculations are connected with formula (4) of the functional equations. When the loss
functionis W(Y,)=||Y, - g I*, then we need to calculate the integral

(Pn (ﬁn’j}n—l): J. ||yn -8 ||2 f(yn /ﬁn’j}n—l)dyn’
Eﬂy
with weight function f(y,/u,,y,;) (19).In accordance with the theorem from Appendix 1 we get:

I Lo 2
9,0, 3, ) =E (1%, =g )= [ 113, =1 £ (5, /i1, 5,00 ), =0 Dy + (N, =27,
Jhck
where D, and Ny are determined by the formulae (20), (21). The variables D, and Ny in this function
¢, (u,,y, ) depend on u,. These dependencies for our affine regression function have the following forms:

R R G K R el

i=0 j=0

0.q 0,q 04 (0,4 H,
= dY +Dc,,0,0 + (Dc[,O,l un)+ (unDc,,1,0)+ (Dc/,l,l un)un
0,9 0,9 H, 0.2¢g
=dy+D, oo+ (Dc,,O,l u,)+ (Dct 1o”n) ( e L1 n)’
) ( n c 1)

0 (1N,
- (°’q<unNc,,1><Nc,,o—g>)+ | (oﬂm) ()

Let us combine the similar terms in the last expression. We transform for this the summands in the
expression for (NY - g)2 . We get for the second summand:

0’()((NC,,o—g)O’ (u., 1)) 0°0((NC,,0—g)o’q(NC,lun))=O’q(o’o((Nq,o— g)NC’l)unj.

Let us transform the third summand as follows:

B 07
: (O,q (unNc 1)(NC,,0 _g)) - (”n N (N“’f’l (NC”O —g)))-

Since the p-dimensional matrix u, is fully convoluted here, than we can use the known formula
for transpose the product [7] and continue:

, 0, 0,
Oo(o’q(“nNcl)(Nc,,o_g))z q(“n O’O(Nc,,l(Nc,,o_g))jz q(O’O(Nc,,l(Nc,,o_g))Hq”nj-

We transform now the fourth summand:

o,O(O’q (u,,Nc 1) ' (unNc 1)) Oo(o’q(u,,Nc 1) (Nc,lun))= O’q(o’q(un O’O(NC 1Nc1))”n]=

024 (0,0 H, ,
= (Nc,,lNc,l) un .
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Finally, we get for (N, — g)2 the following expression:
2 2
(Ny-2) Z(NC“O —g) +
* : (O’O ((Nc,,O - g)Nc,l)un) + - [0,0 (Nc,,l (ch,o —g))Hq Un)+ - (0’0 (Nc,,1Nc,1 )Hq urzl)

If we denote F(u,)=D, +(Ny—g)’, then we get the function ¢,(i,,¥, )=t (F(u,)), where
F(un) = KO + 0 (Klun) + 024 (KZulf):
2
K,=d, +D, 0 +(Nc,,0 —g) ; (22)

K\=D, o, + Di‘i,o + " ((Nc,,o - g)Nc,l ) + " (Nc,,l (Nc,,O - g))Hq ; (23)
Hq

K, = Dc,Hj,l + (Nc,,lNc,l ) (24)

The necessary condition of the extremum of the function ¢, (#,,y, ;) is the following equation:

o 0,2
a0, (@ 3pn) - (dir(F) dF ) (25)
du dF  du, '

n

Since dtr(F)/dF =E(0,p), dF / du, = K, +2%(K,u) , then the condition (25) take the form:

L0ulnun) 020 (0, p)k, )+ 2" (2 (BO. p)Ka) =1, +2° (L) =0, (26
u

n

where L, = """ (E(0, p)K, ), L, = "**(E(0,p)K,).
From the equation (26) we get the optimal value u, of the control action at the last n-th instant
of time:

* . o 1 04
un :arg min (pn (un’yn—l):_z

u,

('n). (27)

The minimal value of the function F(u,) is defined by the expression (Appendix 2)
0ar o, . .
Fu)=K, - (K1 q(o’qK,Z’lK1 ))/4 , and the minimal value of the function f, (4, ,,u,,y, ) — by

the expression:
* * . o % 10,q 0,9 _
J;(un_],un,yn_l)=gg3<pn(u,,,yn_])=rr(F(un))=rr{Ko—Z @ (”K;Kl))]. (28)

The search of the optimal control action u,, at the last n-th instant of time finished there and the
search of the optimal control action u, | at the penultimate (n—1)-th instant of time starts. The control
action u, , is defined by the following expression (the formula (3)):

”:—1 = arg min [(Pn—l (ﬁn—layn—21)+ '[ .fn* (ﬁn—l’u:’j}n—l W Wy Lty 5 0 )dQ]- (29)

1<V Q1)

The function f, (i, ,,u,,¥%,,) (28) in (29) is integrated by y,, with weight function
f,/4,,¥,,) and then minimized by u,_, in sum with ¢, (4,5, ). One can understand,
that the matrices K, , K, K, in (28) depend by u, ; by means the N, ,, N, N.,, D, o0, D. o

¢l
D, 9> D, in (22)-(24), which are determined by formulae (11)~(13) provided S, , = **(uy u; ),

0,0 A .
Syuk = (yn—lun—l) .

D;'= {D;‘;f} = {dg/’f +S, j} = {dg‘;f + ( o (a)'s,,, ))} i,j=0,1;
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"
j=0
Nc, :{Nc,z} = OI{DL,B} :{i(]pﬂq( Crobs] 1)}’ 127’
j=0
S = (i) 8 =" (il

Let us write down these expressions in details:
0,0 -1 0,1 , 0,0, -1
» d.= +dy d. + 7 (dyu,,) ‘

S ) 51,0, 0,0, 4-1 L1, 0,0, 7-1 2
dc + (dY un—l) dc + (dY u

0’0( c c,0)+ Oq(d(]l c 1)+ OO(dY yn 1) _{BO}.

0,0, 71,0 0, L1 0,0, 7—
(dc, Vc,,O) +71 (dc, Vc, ,l) + (dY Y1y ) Bl

BZ{BI'}Z

1

:Zo,jq(Dclj J)_OO(DCIOB)+Oq( ¢, 0,1 )’

=0

N OO(DC OOB )+Oq(Dc OIB) N OO(DCIOB)+Oq( cllB) N OO(DC ZOB)+Oq(Dc 21B)

It is impossible to write down the explicit expressions forthe D, ; ; as the functions by u,_, , since they

n-1>
are the elements of the cell inverse to the cell D,". As a result, it is 1mposs1ble to perform the analytical
minimization in the expression (29). The numerlcal minimization in the expression (29) is impossible too.

However, the control action (27), obtained at the last instant of time, can be used at any instant
of time. We will call the expression (27) the algorithm of the optimal dual control with passive informa-

tion storage. The developed algorithm (27) has the theoretical and algorithmical generality.

Computer simulation

The algorithm of the optimal dual control with passive information storage (27) was realized
programmatically, utilized at a number of objects and showed results acceptable for practice. For in-
stance, the regression object with vector input and output variables and affine regression function (8)
was simulated with following coefficients and variance-covariance matrix of the inner noise:

1 1 2 p 0,001 0 30)
cy = ;¢ = R = .
O 2) V3 oa) Y 0 0,001

The prior characteristics of the coefficients of the approximating polynomial (8) and initial control
action u, are simulated as random.
The sequence of the control actions is showed in a Fig. 2 for some variant of the simulation.

= ! : ! ! !

~ % Real optimal action
S 4| 4 Initial control action
O Final control action
0.5 | —— Control actions

Uy

Fig. 2. The sequence of the control actions for the simulated instance
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The Fig. 2 corresponds to the following priory characteristics of the coefficients of the approxima-
ting polynomial (8): priory mathematical expectations

2 23
VC = ’ VC =
© 3 4 5

and priory variance-covariance matrices

L 420 L2 11,22
- - - -
1 0 0 0
2051 2121 2,012 2122
Y - - -
d 1 0 J 0 1 0 0
oLl 1) 7e®2 a0 1220 1212 1222
Y - - -
0 0 1 0
2201 2221 2212 22722
- -~ - -
0 0 0 1

The four-dimensional matrix d, ,, is presented by an associated with it two-dimensional matrix.
The covariance matrices d,;, and d,,, are taken as zero matrices of appropriate sizes. The Fig. 2
illustrates the stabilization of the regression function at the level g =(9 20). As it follows from the
object description (30), the regression function has the value y=g=(9 20) provided control action
u=(2 3).One can see in the Fig. 2 that this value of the control action is reached.

Appendix 1

Theorem. If z=(z,, ,) be a p-dimensional random matrix with mathematical expectation
. IELEREL G . . .
E(z) =N, and variance-covariance matrix D,, then the mathematical expectation of the square of the
Euclidean norm of the matrix z is defined by the following expression:

E(|| z ||2) = E(O’p(zz)) = tr(DZ +Nf),

where #r(-) means the trace of the matrix; “?(zz) is the (0, p) -convoluted square of the matrix z;

N? is the (0,0) -convoluted square of the matrix N_.
Proof. The square of the Euclidean norm of the matrix z is defined by the formula

2 2 0,p
lz|["= Z Ly Z Zi by seiy By, (ZZ)-

iy e iy e

Then
2 2 2 2
E(HZH )ZE Z Ly iy | Z E(Zil,iz ,,,,, ip)z Z (E (Zil,iz,.“,ip)_i_D(Zil,iz,...,ip )),

iy e iy e iy e
where D(z; ; ;) is the variation of the random variable z; ; .
dysendy iy

Thus E(||z||2)= S BNz, )+ Y. Dz, ):tr(Ez(z)+D(z)).The theorem is proved.

isly 5l ) ) iysly el

iy 5l 5eensly iysly sl

If y=z-g, where g is a constant matrix, then D =D,, E(y)=N,-g, and
E(|lz-gIP)=ur(D,+(N. -g)’).
Appendix 2

Let x:(xj ), Ji =(Jji»J2>--»J,), be a g-dimensional matrix, that is the argument
) S a) 2 q ) o . . .
of a p-dimensional-matrix function y=(yi( )), i) =(ll,12,...,lp), and this function has the form
r

y=0(x)=cy+ *(cx)+ (e x?) =c, o+ M (xc, ;) + "2 (x°c,,), where ¢, , k =0,1,2 ,arethe (p + kg)-di-
mensional-matrix coefficients of the function @(x), and ¢, is symmetric relative its last g-multi-indexes.
Let it be required to find the extremum of this function.

Optimal value of x can be found from the equation S@(x)/0dx =0. Differentiating of @(x) gives
the equation ¢, +2%(c,x)=0. Hence x; =— *7(*‘c;'c;)/ 2, where “/c;" is the matrix (0,q)-inverse
to the matrix c, .
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Let us to find the minimum value y* =@(x") of the function @(x). Since **(c,x*) = "4(*(c,x)x)
and the equation *?(c,x)=—c, /2 for x=x" is fullfilled, we have “*!(c,(x})*)=-"%(¢;x})/2 and

y* = (p(x*) ) +%4 (QX*) +024 (c2(x*)2) =G +%4 (QX*) _% " (01X*) =G +%4 (CLX*)~

Substituting x, into this expression dives

1 0,9

v =¢, _Z (C1 O,Q(o,chlcl)).

Conclusions

To sum up, the general solution to the problem of the dual stabilization of the multidimensional
regression object at the given level with passive information storage in the Gaussian case was obtained
for the first time. The important advantages of the developed algorithm are theoretical and algorithmical
generality. This solution can be applied to control of the various technological processes with many
input and output variables, but each of them requires separate consideration.
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