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Abstract. The statement of the problem of the dual control of the regression object with multidimensional-
matrix input and output variables and dynamic programming functional equations for its solution are given.
The problem of the dual control of the extremal regression object, i.e. object response function of which has an
extremum, is considered. The purpose of control is reaching the extremum of the output variable by sequential
control actions in production operation mode. In order to solve the problem, the regression function of the
object is supposed to be quadratic in input variables, and the inner noise is supposed to be Gaussian. The
sequential solution of the functional dynamic programming equations is performed. As a result, the optimal
control action at the last control step is obtained. It is shoved also that the optimal control actions obtaining at
the other control steps is connected with big difficulties and impossible both analytically and numerically. The
control action obtained at the last control step is proposed to be used at the arbitrary control step. This control
action is called the control action with passive information accumulation. The dual control algorithm with
passive information accumulation was programmed for numerical calculations and tested for a number of
objects. It showed acceptable results for the practice.
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Introduction

The problem of the dual control of the multidimensional regression object is formulated
as follows [1-5]. The control system with controlled object O, controller C, feedback path and driving
action g is considered (Fig. 1).

Fig. 1. To the statement of the dual control problem
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The controlled object O is described at the instant of time s by the probability density function
fY‘. (yAw@aUx) ,» § = 0,1, 2,...,]’! .

where Y = (Y, ) isthe p-dimensional matrix of the output of the object at the instant of time s,
U,=,,. ) isthe g-dimensional matrix of the input of the object at the instant of time s (control
action), ® = {@,,...,®,} 1is a set of the parameters of the controlled object consisting of the random

multidimensional matrices @®,..., ®, Wwith known priory joint probability density function fg ,(0).

Lo
We will call the set ® = {®,,...,® } a generalized parameter of the object O. It is supposed, that the
generalized parameter ® takes constant value for all of the instants of time s =0,1,...,n. The driving
action g is supposed to be known deterministic multidimensional-matrix sequence.

The quality of the functioning of the system at each instant of time s is estimated by a specific
loss function W (Y., g,), depending of output Y, and, might, driving action g . A system,

for which the total for »+1 instants of time total average risk
R=EQ W.(Y,.g)}=D R > R =EW(Y,g,) (1
s=0 5=0

is minimal, is called optimal system. There FE(-) means the mathematical expectation,
R, =EW_Y,,g,)) is a specific risk. The control action U, belongs to some permissible area.
The controller C uses all of the past information in the form of observations i, = (uy,u,,...,u, ),
Vo1 =y, Vs v, of the input and output values of the object to determine the control action u_ at

the instant of time & .
The task consists of determining the strategies of the controller C, i.e. sequence

of the conditional probability density functions f;, (u, /4,y ), i =0,l,...,n, for which the total

average risk R (1) is minimal.
As it is known [2-5], the optimal strategies of the controller C are not randomized,
i.e. the control actions U are not random and will be denoted «, . In this conditions the controller C

will be described by conditional probability density function fy (v, /0,u ), where u  is the fixed
value of the variable U . We will use the following simplified notation: fg,(0)= f,(0),
ng(y_s /e’us):f(ys /e’us)

The optimal control algorithm, ie. the sequence of the control actions u, ,u, ,.., u,

is determined in pointed inverse order from the following functional equations:

fn*(ﬁn—l’u:’j}n—l):{lnei% (Pn(ﬁn’j}n—l) ’ (2)

* — * — . — —
fn—m (un—m—l > un—m > yn—m—l) = umlgu[q)n—m (un—m ° yn—m—l )+

+ J.f::erl (ﬁn—m’uzfmﬂ’)?nfm )f(ynfm /ﬁn—m’j}n—mfl )dQ] s m= 1727""” s (3)
QVp-m)
where ¢ is determined by expression

0,3, )= [W,(r,,8)/ (v, /i, 7,,)dQ, 5=0,...n, )

Q)

inwhich f(y, /i ,p, )= j f(y./0,u,)f.(0)d2, (5)

Q(0)
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5O/, /0.u,)

£,(0)= = (6)
[ HOLT/0. /0. )dﬂ
Q(0) v=0

and u:_m+l is optimal control action for the instant of time (n—m+1).

Note. The notation rnig ¢, (u,,y, ) means the following:
u,e

min @, (i, ¥,,) = @, U8, 15,1 -

Dual control of the extremal regression object

Let us consider the case of dual control when the controlled object has an extremal
characteristic, and the task consist of the search and support this extremal state. The task is concretized
in this case as follows.

The controlled object is described at the instant of time s by the gaussian probability density
function:

f(yS/C,MS)ZN(W(C,MS),dY), (7

where wy(c,u,) is the regression function, 4, >0 is the variance of the inner noise, u

s

is the g-dimensional matrix of the control action u_ = (“_;(q,,s) s Jipy = Uis JasesJy) s v, 1s the scalar
variable ( p -dimensional matrix with p = 0), ¢ is a some set of the parameters (generalized parameter

of the object). Let us note that we natation now the generalized paramener as ¢ instead of ©
in expressions (5), (6). We suppose too that the regression function is quadratic:

m

y=vy(C,u)= i M(Cu) =" W'C )= w(C), m=2, (®)

i=0 i=0
where C,, i=0,1,2, are the (p + ig) -dimensional random matrices, at that C, is symmetrical relative

. .. H iq, ¢ Bl 1q,i . .
its g-multi-indexes, C; =(C,;) """, G, =(C)"™", H,,. . and B, . are the substitutions

of transpose of the type “back” and “onward” respectively [6]. Provided the regrassion function (8),
the probability density function of the object (7) take the following form:

1 P m
Jep,) = —————=exp| = | d,'(y, =D ") || 9
f,le.u,) (2n)ky|dy|e><p[ > ( (v Z(): (u,c j}

For the task of the dual search of the minimum of the regression function we should to choose
the loss function in the form W (Y,) =Y

Let us turn to the functional equations of the dual control (2)~(6) (with replasing 0 by c,)

and find the control actions u,,u u, based on these equations.

1. For first, let us find t}nl_e1 ’po’sterior probability density function £, (c,) of the random cell
=1C,,,C,,,C, 5} by the Bayes formula (6). We will consider the right hand part of the equality (8)

with the parameters C,,,C, ,,C, ; and will suppose the general case, when the output variable y
is p-dimensional matrix. Then C,; are (ig + p) -dimensional matrices, C, are (p +iq) -dimensional

matrices, at that C,, = (C,)", and C,=(C,))", I'=H 0,1,2.

p+lf1 iq ° p+iqiiq > =
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Let us agree to use below the following notations: i,7,,.. are separate indexes,

iy = (}slys..1,) is the set of p indexes ( p -multi-index); lT(p’k) = (lT(p)’l,lT(p),z,...,lT(p)’k) is the set of k
p -multi-indexes.

Let the random cell C, ={C,,}, k =0, m , has the Gaussian priory probability denity function
described by the following expresion [7]:

1 m m

Se)=Mzexp(=2 3 33" (l(ey, = v N NE; ~ V., ) =

=l j=1

ch, exp{_%iio’%(o’q‘@z,id )C:J)+Zzoq’ Oq(cud”)vc J)__Zzoq/ Oq(Vc ldé])VC/’j)},

i=0 j=0 i=0 j=0 10]0

1 .
M =—,qi=p+iq,l:0,m,

- J@emd, |

where the two-dimensional cell d, ={d, , .}, i, j = 0,m, is the variance-covriance cell of the random

Coisj

cell C, [7], dc,,i,j = E(O’O ((C“ —Vcl,l»)(C,’j —V. )) is the ((ig + p) + (jq + p)) -dimensional matrix,

d;' ={d)’}, i,j=0,m, is the cell invere to the cell d,, v, ={V, 1V, 1sssVe ) = Ve i}

i=0,m, is the one-dimensional cell of the mathematical expectation of the random cell C,,
ie. v, ;= E(C,;) is the (ig+ p)-dimensional matrix, n, is the number of the scalar elements
of the cell C,. Then the posterior probability density function f, (c¢) (6) is defined by the following
expression [7]:

JICYE AN e — exp(—l(”z {D""c, - N, }%j = fu(e) (10)
Jem”p, |\ 2

inwhich D, ={D, , ;},

D' ={D[y={d}) +5, )} ={d.) +("(d;'S, N "}, i, j=0.m, (11)

B={B}= {Z Py, EA]S )" } i=0,m, (12)

Jj=0

N, ={N,;}="D, B} = {Z YD, B} i=0m, (13)
S 0,0 & 0,0 A

S =2 "), S =3 (). (14)
p=l p=l

A= Yo Vo) o Uy = (Ut et ) -

The substitutions of transpose 7; ; in (11) and 7, in (12) have the following forms:

N lTlal_Za Z_Xj jZ’---aj_/:H:
7\' u:ll’lz’ l_ jlajz""’jj

,1,j=0,m,
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IoTyeni U

19529°9%> - . .

1, —(“ 73 l} =0, m , where the multi-indexes ]1,]2, osJ jsli5155e-0,1; cONtain by g indexes
b9l 9eeey

and the multi-indexes A, [t contain by p indexes. There are no multi-indexes A, [t in these

substitutions in the case of p = 0, and substitutions 7; ;, 7; in this case are identical [6].

The two-dimensional cell D_'={D.’}, i,j=0,m, (11) has the same dimensions
as the two-dimensional cell D, ={D, , .}, 1ie. Dzl’j is the ((ig+ p)+(jgq + p))-dimension matrix.

The element B, of the one-dimension cell B = {B,}, i = 0,m, (12) is the (ig + p) -dimension

matrix. It is of interest in dual control to use the single measurements for updating
the estimations (10)—(14).
We will have for this the following expressions:

S {(3 ( k+)b) S 3 O’O(ysu?)a

determined by single measurement (u_, ), ) , instead of the expressions (14).

2. Secondly, let us find the probability density function f'(y,/u,,y, ) by the formula (5),

SO, 5,0 = [ f, ] eu,) f,(e)dR, (15)

Q(C)

where f (c,) is determined by the formula (10). We will use for this the following theorem from [7]:

Theorem (total probability formula for the joint Gaussian distribution of the multidimensional
random matrices). Let E={E.}, i=12,...,m, be an one-dimensional random cell, composed

of the ¢, -dimensional matrices Z,, &, the number of the scalar components of the matrix Z,, (&)
the probability density function of the cell E, k. =k +k,+...+k, the number of the scalar
components of the cell =, f(y/&) the condition probability density function of a p -dimensional

matrix Y, k, the number of the scalar components of the matrix Y, E*s the k. -dimensional

Euclidean space. If in the total probability formula

f)= [F018) 1) (16)

the conditional probability density function f(y/&) has the following form

1 1 &
JE) o =" d (y = " (hEN) |5 (17)
f/9) (2n)ky|dy|exp[ 7 = BE) )j

where A, is a (p + ¢,) -dimensional matrix, allowing the multiplication " (h&,), and the probability
density function f(&) has the following form

1 0,
f(§)=— {—— DO~ v )E, — V2 ))}
J(2n)' |d | ;ZEIZ;

then the integral (6) (the total probability formula) is defined by the following expression:

f0)= [ 1078/ E)de= fexp(—l D (-3 (hl-vg,l-»%} (18)
@m" D, \ 2

where D, d+zzoq’(°q(h,d_” -

i=l j=1
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Letus replace & by ¢, and f(§) by f,(c,) (10) in this theorem and compare the expression (9)

with the expression (17) from theorem. We realize that p, =ig, h =u,. In accordance with
formula (18) of the theorem we obtain the following expression for the integral (15):

f(yn/ﬁn’yn—l): .[ f(yn/ct’un)-f;l(ct)dct: 1 exp(_lo,p(DYl(yn_NY)Z)j’ (19)
Fle (2m)" | D, | 2
where D, =d, + Y > (™ (u,D, , u)), (20)
= j=1
N, zown g 1)

The matrices D, ; . and N_ , in (20), (21) are defined by the expressions (11), (13).

Ciilyj
3. Thirdly, the further calculations are connected with formula (4) of the functional equations.
When the loss functionis W, =Y, , then we need to calculate the integral

0, iy, 3,) = [ 9, 0, 1y 5, )Y,

Eny

with weight function f(y, /u,,y, ) (19).
This integral is nothing more than posterior mean value (21):

(Pn(ﬁn’j}n—l)z '[ynf(yn /ﬁn’yn—l)dyn ZOICI(M NCI,O +06](u N 1)+02q(u N )
R!

i=0

Returning to the case p =0 gives the equalities Nc =N N =N,,, S i =°’°(uf71u371) ,

c,l?

Syu)' =0’0(yn_1u2_1), identical substitutions 7; ;, 7; and the following expression for the function

(pn(ﬁn’j)nfl):

¢n(ﬁn’)7nfl):_'.ynf(yn /ﬁnﬁj}n—l)dyn :zojq(un [ z) Nc 0+0q(N lu )+02q( 2“ )
R

i=0

where N, = (N, ,} ="{D, B} = {Z‘”’*”( B i=0m.

D;l — {Dcl’,l} — {dcl'/ +S } {dtl +(O O(d 1u1+;))} m,

B={8) ={Z S, )y °’°<y,,1u:;1»}, =0,

J=0
This function o, (#,,y, ;) has an extremum at the point [Appendix]
. . - 10g g, -
u’ = arg min (pn(un,yn_l)z—z ( N\,N, ), (22)

u,

which is the optimal control action at the last #n-th instant of time. The minimal value of the function
¢,(u,,y,,) is defined by the following expression (Appendix):

* - . o 1 0.9 0,9 _
?, (un’un—l’yn—l) = rlp;{jl(pn(unﬁynfl) = NC,,O _Z (NC,,I (O’qNC,,l2NC,,1 )) . (23)
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The search of the optimal control action u, at the last n-th instant of time finished there and

the search of the optimal control action u, , at the penultimate (n—1)-th instant of time starts.

The control action « , is defined by the following expression (formula (3)):

u:—l = arg mle% (pn—l (ﬁn—l b jjn—Z ) + J (pn (u: b ﬁn—l > J_;n—l )f(yn—l / I:in—l > jjn—Z )dQ : (24)

Upy
! Q1)

The function o, (u i, ,,7,,) (23) in (24) is subjected to integration by y _, with weight

n-1°

function f(y, /i, .y, ,) and then is minimized by u, , in sum with the ¢, (i, ,, 7, ,, ). One can

n-1° n-1

show that the calculations by the expression (24) are very difficult. Indeed, the expressions

for the parameters N, ,, N, N, , of the function ¢, (u.,i, ,,¥,,) (23) have the following

¢l c,2 n—12

expanded form:

0,0 0, 0.2
(Dc,,O,OBO) + (Dq ,0,131) +0 (Dc,,o,sz) N%
0,0 0, 0.2 _
Ncl = (Dq,l,oBo)"' q(Dc,,l,lBl)+ q(DcL,l,ZBZ) = Nq_] ’ (25)
0,0 0, 0.2
(Dcl,z,oBo) + q(DcL ,2,1B1) +07 (Dc,,Z,ZBZ) Nc,yz
0,0 0,1 0,2 2
d.”+1 d +u,, d -~ +u,,
whete D' =1d 4u,, dY+u?, AP 4ul, b, (26)
2,0 2 2,1 3 2,2 4
dc, +u dc, +u, dc, +u,
0,0/ 70,0 0.q ¢ 70,1 0,2q, 70,2 0,0, 7-1
(dc, Vc, ,0 )+ q(dc, Vc,,1)+ q(dc, Vc,,2)+ (dY yn—l) B

0

0,0/ 71,0 0, L1 0,2 1,2 0,0, 7-1
B={B}=y""(d, v, o)+, v, )+ d. v, )+ (dyy, u,,) B ¢s

0,0 2,0 0, 2,1 0,2 2,2 0,0 -1 2
@ v, @ v, A v, ) dy y, )| B

and the matrices D iLj= O,_m , in (25) are the elements of the cell D, inverse to the cell D;l (26).

[Ny
One can understand, that the matrices N_,, N_,, N_, (25) are very complicate functions
of the matrix u, ,. As a result, it is impossible to perform the analytical calculations and minimization
in the expression (24). The numerical minimization in the expression (24) is impossible too.

However, the control action u, (22), obtained at the last instant of time, can be used
at any instant of time s. We will call the expression (22) the algorithm of the dual extremal control
with passive information storage. Let us consider more general case p#(0 and loss function
WY,)= P (Y, —g)), where o.and g are constant p-dimensional matrices with the same dimension

as the matrix ¥ . We have in this case the task of the dual search of the extremum of the weighted output
vatiable of the regression function.
The calculation of the functions f (c,) and f(y,/u,,y,,) 1s described

above (the functions (10), (19)).
The function ¢, (u,,y, ), in accordance with the formula (4), is defined by the following

expression:

0,00, 3, 2) = [W, (V) (, /4,5, )=

Q(y,)
=EW(Y,)=E("" (Y, - g)) =""(W(E¥,)-g))=""(a(N, - g)).

Taking into account the expression (21) for the N, , we get:
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0,p
0,3, )= | P @, =) f ), /i, 5, )by, = (G(Zo’iq(u;Nc“i)—gJ]:

Eny i=0
0,p
= (a(Nc,,() + 0,9 (unNCl ’1) + 0,2¢q (uqu ,2) — g)) , and also

I, N 0,p
9,3, 5,.)= [ 7@, =N, 11,5, My, = (@ Nog+ (N, )+ 2 (N, u7) - ) ) =

E"
=" (N, =)+ ("7 (aN, Ju,) + (" (N, )uy)
H
where N, =N, .. N, =(N, )", N_, =(N_,)"= . Hence (Appendix)

1 0g

u, =arg min ¢, (#,,y, )= - (O’qM;IZMC’l) , (27)

where M =""(aN,,), M_, =""(aN,_,) . The formula (27) is the optimal control action at the last

n-th instant of time.
The minimal value of the function ¢, (u,, v, ;) is (Appendix):

* - . o 1 0.9 0,9 0,q -1
(pn(un’un—l’yn—l) = rb}’litljl(pn(un’yn—l) :MC‘,O _Z (Mc,l ( Mc,2Mc,1) 4
where M, = 0 ((N.y—2))-

The search of the optimal control action u, , at the penultimate (n—1)-th instant of time seems

unfeasible. The control action u, (27), obtained at the last instant of time, can be used at any instant of time s .

Computer simulation

The algorithms of the optimal dual control with passive information storage (22), (27) were
realized programmatically, utilized at a number of objects and showed results acceptable for practice.
For instant, the object with Booth function as the regression function was simulated:

y=(x+2x,-7)" +(2x, +x, - 5)*. (28)

This function has minimum at the point (x,,x,)=(1,3). The following priory characteristics
of the coefficients of the approximating polynomial (8) was used: the priory mathematical expectations

v, =50, v, =(-20 -25), v, :(9 Sj
' ‘ @509

and the priory variance-covariance matrices

LLLL LL20 LLL2  L12.2
~ - - “~
1 0 0 0
2LLT 2021 2012 2,122
o oo o
deoo=1,4d,,, = [0 J’ d.,, =05 1201 1221 1212 1222
S S % -
0 0 1 0
2211 2221 2212 22272
-~ S -~ e
0 0 0 1
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The four-dimensional matrix d_,, is presented by an associated with it two-dimensional

matrix. The covariance matrices d ,, ,d d,.,,d.,0-d.,, and d_,, are taken as zero matrices

c,1,0
of the appropriate sizes.
The sequence of the control actions is showed in a figure for some variant of the simulation.

Dual control actions

12 O Initial control action |

\ O  Final control action
10 4  Point of minimum []
8 —e— Control actions
6 R

: ‘:\\
2 ANl
\

u2

Fig. 1. The dual control actions for the example

One can see in the figure that the point of the extremum of the regression function (28)
is reached.

Conclusion

To sum up, the general solution to the problem of the dual control with passive information
storage of the extremal multidimensional regression object in the Gaussian case was obtained
for the first time. This solution can be applied to control various technological processes, but each
of them requires separate consideration. One of them is the allowance distribution problem [8§].

Appendix

Let x:(xi( )), Jigy = Uts Jases J,)» e @ g-dimensional matrix, that is the argument

of a p-dimensional-matrix function y = ( Vi, Vol = (41583551 ,) , and this function has the form

y=0(x)=c, +"7 (¢,x) +"* (c,x*) = Co +04 (xc,,) +0% (xzcm) , where ¢,, k=0,1,2, are the

(p + kq) -dimensional-matrix coefficients of the function ¢(x), and ¢, is symmetric relative its last
g-multi-indexes. Let it be required to find the extremum of this function.

Optimal value of x can be found from the equation dp(x)/0x = 0. Differentiating of ¢(x)

gives the equation ¢, +2%/(c,x) =0.

lO,q (O,q 1

-1 -1 - . . .
Hence x, = ™ c, ¢,), where “c;' is the matrix (0,¢)-inverse to the matrix ¢, .

Let us to find the minimum value y* = @(x") of the function ¢@(x).

. 1 . s
Since " (c,x*) = “/("*(c,x)x) and the equation *(c,x]) = > ¢, for x=x" is fullfilled, we have
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1

(e, (6,)") = =" (¢c,x;) and

2

y* = (P(X*) =¢C +%4 (Cl)C*) - (Cz (x*)z) = +%4 (Cl)C*) _%O,q (01X*) =C + (Cl)C*)-

o . . L . 1 ,
Substituting x into this expression dives y~ = ¢, —ZO’”’ (c,”("c)'e))).
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