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Abstract. The geometrical Kosambi–Cartan–Chern approach has been applied to study the systems 
of differential equations which arise in quantum-mechanical problems of a particle on the background 
of non-Euclidean geometry. We calculate the geometrical invariants for the radial system of differential 
equations arising for electromagnetic and spinor fields on the background of the Schwarzschild spacetime. 
Because the second invariant is associated with the Jacobi field for geodesics deviation, we analyze its behavior 
in the vicinity of physically meaningful singular points r = M, ∞. We demonstrate that near the Schwarzschild 
horizon r = M the Jacobi instability exists and geodesics diverge for both considered problems. 
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Introduction 

The behavior of material fields in the vicinity of cosmological objects such as black holes 
or neutron stars is of great interest [1, 2]. Relevant spacetime models describe gravitational potentials 
of these objects. However, the search for  analytical solutions under the background of curved 
spacetimes remains to be a complicated problem that stipulates the development of other methods to 
analyze the behavior of the corresponding dynamical systems. 

The Kosambi–Cartan–Chern geometrical approach (KCC-theory) was developed in details 
in numerous mathematical books and papers [3–5]. KCC-theory allowed to describe the evolution of a 
dynamical system in a configuration space of the Lagrange type. At that, the dynamical system is 
governed by the system of second-order differentials equations. 
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Results and discussion 
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where L is a Lagrangian function, Gi is called a semispray. The properties of this dynamical system 
can be described in terms of five KCC geometrical invariants. From the physical point of view, 
the most interesting invariant is the second one P which is associated with the Jacobi field for 
geodesics deviation, so it indicates how rapidly different branches of the solution diverge from or 
converge to the intersection points. Explicitly, the second KCC-invariant can be calculated according 
to the formula 
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In this work we apply the KCC-theory to study systems of differential equations which arise 
in the theory of electromagnetic and spinor fields on the background of the Schwarzschild spacetime. 

Electromagnetic field 

In [6] the Maxwell equations were considered on the background of the Schwarzschild 
spacetime 
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where function 1
M

r
   , and the differential equation system for the radial components was 

derived after separating the variables in the initial Maxwell equations both in 3-dimensional 
Majorana-Oppenheimer and 10-demensional Duffin–Kemmer–Petiau approaches. We start with the 
second order differential equation for the primary radial function F that was obtained in Majorana–
Oppenheimer formalism: 
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where x r M is a dimensionless coordinate. The spray coefficient G equals 
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The second KCC invariant is found in the form  
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In Duffin–Kemmer formalism the equation for another primary radial function f is ([6]): 
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where a derivative over r is denoted by a prime. Utilizing the notations x r M , one finds the second 
KCC-invariant in the form: 
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which coincides with (6).  
Near singular points, the eigenvalue of the second invariant P   behaves as follows: 
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It indicates that in the vicinity of x = 0 (this point is nonphysical) the geodesics converge. 
Vice versa, near the physical points, Schwarzschild horizon x = 1 and at x  , the Jacobi instability 
exists and the geodesics diverge. The typical behavior of the eigenvalue as a function of the radial 
coordinate is shown in Fig. 1, а. 

  
a b 

Fig. 1. The behavior of the real parts of the second invariant eigenvalues for the geometrized problem 
of the electromagnetic (a) and spinor (b) fields on the background of the Schwarzschild spacetime. The values 

of parameters used are: a – M = 1, ω = 0.0001 (dashed curves) and 1.0001 (solid curves), j = 1 (blue) 
and 2 (red); b – m = 1, M = 1, ε = 0.0001 (dashed curves) and 1.0001 (solid curves), j = 1/2; blue and red curves 

correspond to two different eigenvalues Λ1 and Λ2 

Spinor field  

We consider the spin 1/2 particle on the background of the Schwarzschild spacetime. We start 
from a generally covariant form of the Dirac equation: 
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in the orthogonal static coordinates  α ,θ,φ,x t r
 
and tetrad in the Schwarzschild spacetime  
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After separating the variables with diagonalization of the total angular momentum [7, 8] we 
derive the system of equations 
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Each complex function ( )if r  we resolved into a sum of real and imaginary parts: 

1 1 2f x ix  , 2 3 4f x ix  , 3 5 6f x ix  , 4 7 8f x ix  . (11) 

By substituting expressions (11) into the system (10) one gets the system of 8 connected 
differential equation systems of the first order. To bring it to the second order differential system 
of the type (1) we differentiate each equation over the radial variable. After that the second invariant 
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can be directly calculated  
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The eigenvalues i  of the second invariant i
jP  is fourfold degenerated, the different two are 

determined as 
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The dependences of two different eigenvalues  Λ1,2 of the second invariant on the radial 
variable have been analyzed for different values of energy ε  (see Fig. 1, b). Near the singular points 
the eigenvalues behave as follows:  
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So, in the vicinity of the Schwarzschild horizon the geodesics diverge at any energy ε, 
while at r   the geodesics diverge at ε m  and converge at ε m , however the second 
possibility may be ignored as nonphysical. 

The contradictory results have been found out for the problem of the existence of bound states 
for the Dirac equation in the presence of a black hole [2, 9]. Our results on the KCC-analysis support 
the conclusion that the fermion bound state on the background of a Schwarzschild black hole are 
absent as the bound state solution has to be characterized by the convergence of the geodesics flow 
near the extreme points r M  and r  . The main argument against the existence of bound states 

in this system consists of the following: effective potential curves are of a barrier type and do not 
contain any potential well (see [7]). 
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Conclusions 

The authors applied the KCC-geometrical approach to study the radial systems arising in two 
problems, electromagnetic and spinor fields on the background of the Schwarzschild spacetime. 
The stability analysis in terms of the second invariant demonstrates similar behavior of geodesics 
at r → ∞ for these two systems. 
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