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Abstract. The two-dimensional circular quantum dot in a double semiconductor heterostructure is simulated by  
a new axially symmetric smooth potential of finite depth and width. The presence of additional potential 
parameters in this model allows us to describe the individual properties of different kinds of quantum dots. 
The influence of the Rashba and Dresselhaus spin-orbit interactions on electron states in quantum dot is 
investigated. The total Hamiltonian of the problem is written as a sum of unperturbed part and perturbation. 
First, the exact solution of the unperturbed Schrödinger equation was constructed. Each energy level of the 
unperturbed Hamiltonian was doubly degenerated. Further, the analytical approximate expression for energy 
splitting was obtained within the framework of perturbation theory, when the strengths of two spin-orbit 
interactions are close. The numerical results show the dependence of energy levels on potential parameters. 
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Introduction 

The motion of an electron in an inner layer of a double semiconductor heterostructure is 
usually treated as two-dimensional in the ( , )x y  plane. In addition, the planar motion is also restricted 
if an electron is placed in a quantum dot localized in the middle layer of heterostructure. The Rashba 

RV  [1] and Dresselhaus DV  [2] interactions are presented by the formulas  

= ( ) / , = ( ) / ,
R DR x y y x D x x y yV p p V p p        (1) 

where x  and y  are the standard Pauli spin-matrices. The strengths of these interactions depend 

on the materials used. The contributions of two spin-orbit interactions can be measured within various 
experimental methods [3, 4]. In the general case the whole spin-orbit interaction has the form R DV V . 
At the same time, considerable attention is paid to the special case [3, 5, 6], when the spin-orbit 
interactions of Rashba and Dresselhaus have equal strength =

R D
  . It can be experimentally 

achieved due to the fact that the Rashba interaction strength can be controlled by an external electric 
field, and the Dresselhaus interaction strength can be varied by changing the width of quantum well 
along the z  axis [3, 7]. 
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As a rule, circular quantum dots are simulated with the help of axially symmetric confinement 

potentials ( , ) = ( )V x y V  , where 2 2= x y  . In [8, 9], a simple but sufficiently adequate 

rectangular potential of finite depth was proposed. This model with a discontinuous potential 
describes the main properties of circular quantum dots but without taking into account the individual 
characteristics. In [10], the smooth confinement potential of a new type which has finite depth and 
width was applied in the case of equal strengths =

R D
  . The presence of additional potential 

parameters allows us to simulate different kinds of circular quantum dots. In the actual paper, we use this 
potential in order to calculate the energy levels of electron for unequal but close strengths 

R D
   . 

Methods and results 

The circular quantum dot of radius 
0

  is described by means of the confinement potential 

0
( ) = ( )V V v r , where 

0
V  is the depth of the potential well. The function ( )v r  depends on ratio 

0
= /r    in the following way  

1

2

0, 0 < < ,

( ), < < ,
( ) =

( ), < < 1,

1, > 1.

r g

v r g r s
v r

v r s r

r








 (2) 

The functions 1( )v r  and 2 ( )v r  have the following forms:  
22 2

1 1 1 2 2 2

1 (1 )
( ) = , = ,

2 (1 )( )

g s
v r d r d

r g s g

  
    

 (3) 

2 2 2

2 2 2 2 2

1 1 ( )
( ) = 1 , = .

2 (1 )(1 )

g s
v r d r d

r g s

      
 (4) 

The parameters g  and s  change within ranges 0 < < 1g  and < < 1g s . The function ( )v r  
and its first derivative are continuous in the inflection points =r g , =r s  and = 1r . 

The total Hamiltonian of the problem can be written as a sum 0 1=H H H , where  

2 2

0

( )
= ( )( ) ( ),

2 2
R Dx y

x y x y
eff

p p
H p p V

M

  
      


 (5) 

1

( )
= ( )( ), = ,

2
R D R D

R D

x y y xH p p
    

     
  

 (6) 

effM  is the effective electron mass which characterizes the motion in a semiconductor. 

We shall solve the full Schrödinger equation =H E   in two stages. First, we obtain 
an exact solution of the unperturbed Schrödinger equation 

0 0 00 =H E   and then we shall take 

into account the perturbation 1H  within the framework of the perturbation theory. 
By analogy with [10] it is easy to show that the required solutions of the unperturbed 

Schrödinger equation admit a factorization  

0 /4 2

( ) ( )11
( , ) = exp ( ),

2 2

R D eff im
i

M x y
x y i e w

e
 

 

    
      




 (7) 

where = 0, 1, 2,m     is the angular momentum quantum number. Here we use the polar coordinates 
,   ( = cos , = sinx y    ). 

Introducing dimensionless quantities  
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0 0 0

0 0 0 02 2 2

2 22 2
= , = , = ( ),

R D

eff eff effM M M
e E v V a

  
 

  
 (8) 

we get the radial equation  

 0 0

2 2
2

2 2

1
( ) = 0.

d w dw m w
e a v v r w

d r r dr r
      (9) 

It is seen that the wave function depends only on the combination 
0

2e a . 
In the region 0 < <r g , the finite at 0r   solution of radial equation is expressed via 

the Bessel function [11] by means of the formula  0

2
1( ) = .mw r J e a r  

In the region < <g r s , it is simple to obtain two solutions in terms of the confluent 

hypergeometric functions [11]:  

 0

0

1 2 2
2 1( ) = exp ,1 , ,

2
B d v

w r r r M A B d v r
 
   
 

 (10) 

 0

0

1 2 2
3 1( ) = exp ,1 , ,

2
B d v

w r r r U A B d v r
 
   
 

 (11) 

where  

0 0

0

0

2 2
2 41

1

1

21
= , = .

2 4

e a d g vB
A B m d g v

d v

 
   (12) 

In the region < < 1s r , it is easy to show that two solutions are  

4 5

( ) ( ) ( ) ( )
( ) = , ( ) = ,

2 2

w r w r w r w r
w r w r

i
    

 (13) 

 0

0

2 2 2
2( ) = exp ,1 , ,

2
B d v

w r r r M A B d v r
  

 
    

 
  (14) 

where  

0 0 0

0

0

2
22

2

2

21
= , = .

2 4

v e a d vB
A B m d v

d v


 

  
  


 (15) 

Note that the functions 4 ( )w r  and 5 ( )w r  are real if 
0

2
2 >d v m . 

In the region > 1r , the decreasing solution is expressed via the modified Bessel function [11] 

with the help of the formula  0 0

2
6 ( ) = .mw r K v e a r   

Thus, we obtain the radial wave function  

1 1

2 2 3 3

4 4 5 5

6 6

( ), 0 < < ,

( ) ( ), < < ,
( ) =

( ) ( ), < < 1,

( ), > 1.

c w r r g

c w r c w r g r s
w r

c w r c w r s r

c w r r


 
 


 (16) 

The coefficients ic  are found from the continuity condition for function ( )w r  and its first 

derivative ( )'w r  at three inflection points =r g , =r s , and = 1r . The fulfilment of this condition 
and the continuity of the potential and its first derivative guarantee the continuity of the second and 
the third derivative of the wave function. 
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Six coefficients ic  satisfy six linear algebraic equations  

0 0
( , , , , , ) = 0,T g s v m a e X  (17) 

where 1 2 3 4 5 6= { , , , , , }c c c c c cX  and matrix T  has the form  

0 0

1 2 3

1 2 3

2 3 4 5

2 3 4 5

4 5 6

4 5 6

( ) ( ) ( ) 0 0 0

( ) ( ) ( ) 0 0 0

0 ( ) ( ) ( ) ( ) 0

( , , , , , ) = .0 ( ) ( ) ( ) ( ) 0

0 0 0 (1) (1) (1)

0 0 0 (1) (1) (1)

' ' '

' ' ' '

' ' '

w g w g w g

w g w g w g

w s w s w s w s

T g s v m a e w s w s w s w s

w w w

w w w

  
   
  
 

  
 
 

 
 
 

 (18) 

Then the dependence of dimensionless energy 
0 0
( , , , , )e g s v m a  on three dimensionless 

potential parameters g , s , and 
0

v  is determined by the transcendental equation  

0 0 0 0
( , , , , , ) = det ( , , , , , ) = 0.k g s v m a e T g s v m a e  (19) 

This equation is solved numerically. Each level of energy is degenerate with two eigenfunctions 

0
( , )x y  and 

0
( , )x y . 

When the exact values of 
0 0
( , , , , )e g s v m a  are found it is not hard to obtain the values 

of coefficients ic  from the system (17) and the standard normalization condition. 
So, the exact solution of the unperturbed Schrödinger equation is constructed for an electron 

in a circular quantum dot which is simulated by the smooth potential (2). 
We introduce the dimensionless perturbation 

0

2 2
1 1= 2 effh M H   and consider the contribution 

of 1h  with the help of the perturbation theory in the degenerate case for the small value of  . 

In the basis of the eigenvectors 
0

|    and 
0

|    of the unperturbed Hamiltonian we have the 

following equalities 
0 01| | = 0h     for the diagonal matrix elements. Off-diagonal matrix elements 

are given by 
0 0 0 01 1| | = | | = ( , , ),h h m v a           where  

2 2
10 0

= 2 (2 ) ( ) ( ) .ma J ar w r dr w r rdr
 

     (20) 

Then we get splitting 
0

=e e    for the energy levels. Normalized eigenfunctions in zero-

order approximation, which correspond to the eigenvalues e , are described by the formula 

 0 0
= / 2     . The distinctive feature of the used approximation is zero correction for zero 

angular momentum ( = 0m ). 
Now we present some numerical illustrations in addition to the analytical results. If we choose 

the value of effective electron mass = 0.067eff eM M  related to GaAs, where eM  is the electron mass in 

vacuo, and assume 
0
=30  nm, then the following correspondences =1 ( ) / 2=18.9579

R D
a     meV nm, 

= 1 = 0.631933e E  meV between the dimensionless and dimensional quantities are obtained. 
Tab. 1, 2 demonstrate the dependence of energy levels on potential parameters at the 

following angular quantum numbers = 0, 1, 2m   . First of all we emphasize that the number of 
discrete levels is finite. This number increases if the parameters 

0
v  and g  grow and decreases if m  

grows. The energy level decreases if the parameter s  grows. The ratio 
0

/ e  decreases if 
0

e  grows. 
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Table 1. The dependence of 
0

e  and δ  on potential parameters for = 1a  and 
0

= 100v  

| |m  
0

e , ( δ ) 

 = 0.1g  = 0.9g  

 = 0.325s  = 0.775s  = 0.925s  = 0.975s  
0 37.8202 (0.00000) 21.1503 (0.00000) 4.36674 (0.00000) 4.20242 (0.00000) 
 98.3459 (0.00000) 66.4228 (0.00000) 27.0087 (0.00000)     26.158 (0.00000) 
 – – 66.1516 (0.00000) 64.1934 (0.00000) 

1 78.2272 (1.87550) 43.1724 (1.83448) 12.5861 (1.66374) 12.1710 (1.65410) 
 – 87.9681 (1.61613) 43.8652 (1.65402) 42.5166 (1.64521) 
 – – 89.2195 (1.54573) 86.8404 (1.55437) 

2 – 66.3115 (3.50209) 23.3249 (3.17680) 22.5838 (3.15368) 
 – – 62.8864 (3.22045) 61.0017 (3.20327) 

Table 2. The dependence of 
0

e  and δ  on potential parameters for = 1a  and 
0

= 400v  

  | |m    
0

e , ( δ )   

   = 0.1g    = 0.9g   

   = 0.325s    = 0.775s    = 0.925s    = 0.975s   
  0   68.4065 (0.00000)   37.9282 (0.00000)   4.97095 (0.00000)   4.78748 (0.00000)  

  248.296 (0.00000)   130.485 (0.00000)   30.4112 (0.00000)   29.4418 (0.00000)  
  374.034 (0.00000)   223.558 (0.00000)   75.9617 (0.00000)  73.569 (0.00000)  
 –  315.804 (0.00000)   141.174 (0.00000)   136.714 (0.00000)  
 –  394.955 (0.00000)   225.085 (0.00000)   217.952 (0.00000)  
  –  –  325.146 (0.00000)   315.041 (0.00000)  

 1   154.175 (1.95605)   82.8206 (1.91536)   14.1512 (1.69837)   13.6850 (1.68944)  
  324.261 (1.87921)   176.327 (1.83530)   49.6767 (1.70195)   48.1080 (1.69318)  
  398.235 (1.16738)   269.601 (1.75627)   105.147 (1.69960)   101.834 (1.69064)  
 –  359.397 (1.64424)   179.906 (1.69342)   174.211 (1.68430)  
 – –  272.482 (1.67878)   263.873 (1.67029)  
 – –  377.369 (1.59580)   366.451 (1.61028)  

 2  244.117 (3.86453)  129.076 (3.74964)   26.2025 (3.26501)   25.3643 (3.24341)  
 380.222 (3.53219)  222.626 (3.59204)   71.8550 (3.35158)   69.5931 (3.33240)  
 –  315.315 (3.42475)   137.158 (3.36809)   132.829 (3.34919)  
 –  396.324 (2.76619)   221.216 (3.36065)   214.206 (3.34202)  
 –  –  321.637 (3.31530)   311.605 (3.30183)  

Conclusion 

The confinement model potential for a quantum dot considered in the present paper is smooth, 
has finite depth and width and permits the exact solutions of the separated unperturbed Schrödinger 
equation for electron states in the presence of the spin-orbit interaction of Rashba and Dresselhaus. 
The contribution of perturbation is really small in comparison with the unperturbed energy 

0
e  

if the strength 
R

  is sufficiently close to the strength 
D

  ( 1 ). Further, we intend to construct 

higher-oder corrections to the energy levels. 
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