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Abstract. The total probability formula for continuous random variables is the integral of product of two 
probability density functions that defines the unconditional probability density function from the conditional 
one. The need for calculation of such integrals arises in many applications, for instant, in statistical decision 
theory. The statistical decision theory attracts attention due to the ability to formulate the problems in a strict 
mathematical form. One of the technical problems solved by the statistical decision theory is the problem of dual 
control that requires calculation of integrals connected with the multivariate probability distributions. The 
necessary integrals are not available in the literature. One theorem on the total probability formula for vector 
Gaussian distributions was published by the authors earlier. In this paper we repeat this theorem and prove a 
new theorem that uses more familiar form of the initial data and has more familiar form of the result. The new 
form of the theorem allows us to obtain the unconditional mathematical expectation and the unconditional 
variance-covariance matrix very simply. We also confirm the new theorem by direct calculation for the case of 
the simple linear regression. 
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Introduction 

The total probability formula for continuous random variables is the integral transformation 
that transforms the conditional probability density function to the unconditional. The integral 
transformations of the continuous probability distribution are used in the statistical decision theory 
[1, 2] and, particularly, in dual control theory [3]. To date, we do not have the required table integrals 
for multivariate probability distributions [4–6]. The multivariate (vector) normal or Gaussian 
distribution is of interest that is often used to describe, might approximately, different sets of random 
variables. 

The random vector ),...,,( 21 
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where ),...,,( 21 
 k

T  is vector-row of the arguments of the probability density function (ξ)f , 

),...,,( ,2,1,   k
T  is the vector-row of the parameters of the probability density function (ξ)f , 

)( ,, jidd   ,  kji ,1, , is the symmetric positive-definite matrix of the parameters of the 

probability density )(f , 1
d  is the matrix inverse to the matrix d , || d  is the determinant of the 

matrix d , kE  is the k -dimensional Euclidean space, symbol T  means transpose. The parameters 

  and d  of the distribution (1) are mathematical expectation and variance-covariance matrix of the 

random vector   respectively [7, 8].  
In work [9] there was published the following theorem connected with the vector Gaussian 

distribution (1). 
 
T h e o r e m  1. (The total probability formula for vector Gaussian distributions). Let 

),...,,( 21 
 k

T  be a row random vector with k  components, ),...,,( 21 Xk
T XXXX   be 

a row random vector with 
Xk  components, (ξ)f  be the probability density of the vector  , )/( xf  

be the condition probability density of the vector X , kE  be the k -dimensional Euclidean space. 

If in the total probability formula 
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the probability density )/( xf  is represented in the form 
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and the probability density (ξ)f  is represented in the form 
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then integral (2) (the total probability formula) is defined by the following expression: 
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In addition to the theorem 1, we will prove the following theorem 2 which can be more useful 
in some application compared with the theorem 1. 

The new theorem on the total probability formula for vector Gaussian distributions 

Theorem 2. Let ),...,,( 21 
 k

T  be a random row vector with k  components, 

),...,,( 21 Xk
T XXXX   be a random row vector with Xk  components, )(f  be the probability 

density function of the vector  , )/( xf  be the condition probability density function of the 

vector X , kE  be the k -dimensional Euclidean space. If in the total probability formula 
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the probability density function )/( xf  has the form 
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where )( , jihh  , Xki ,1 ,  kj ,1 , is the )(  kkX -matrix, and the probability density function 

)(f  has the form 
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then integral (9) (the total probability formula) is defined by the following expression: 
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where T
XX hhddD  .  

 
Proof. We will use the theorem 1 and represent the functions )/( xf  and )(f  in the form 

(3), (4) respectively: 












 







)()(
2

1
exp

||)2(

1
)( 1d

d
f TT

k












 













111

2

1

2

1
exp

||)2(

1
ddd

d

TTT

k
, 












  )()(

2

1
exp

||)2(

1
)/( 1 hxdhx

d
xf X

T

X
kX

 












  hdhhdxxdx

d
X

TT
X

T
X

T

X
kX

111

2

1

2

1
exp

||)2(

1 . 

 
In accordance with the theorem 1 we have the following notations: 

hdhS X
T 1 , hdxV X

TT 1 , xdxW X
T 1 . 

Then in the formulas (5)–(8) 
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Let us substitute the last expressions into the total probability formula (5) and perform some 
transformations. We will get: 









 




CBABMdfxfxf T
X

Ek 2

1

2

1
exp)()/()( 1  









 


















 )(

2

1
)2(

2

1
exp 11111111111 xdxdxdhhAdxdhAdxdAdM X

TT
X

T
X

T
X

TT
X  



ДОКЛАДЫ БГУИР  DOKLADY BGUIR 
Т. 19, № 2 (2021)   V. 19, NO. 2 (2021) 

 

61 
 









 














 xdxddAddhAdxxdhhAdxM X
TTT

X
T

X
T

X
T

X
11111111111

2

1

2

1

2

1

2

1
exp  









 













 )(
2

1
)()(

2

1
exp 11111111111 dAddxdhAdxdhhAddxM T

X
TT

X
T

XX
T

X
, (12) 

where 
||||||)2(

1

X
kX

dAd
M

X


 . 

Let us now reduce the expression (12) to the form (11). We will use for this the known identity [10] 
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Applying the formula (13) to the left side of the last equality, we get the following equality: 
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Multiplying this equality by the Xd  on the right and transferring the right side to the left we get: 
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which is the expression (11). This completes the proof of the theorem 2. 
It should be noted that the expression h  in (10) is the conditional mathematical expectation 

of the random vector X  (the regression function of X  on  ). The result of the theorem 2 in the 
form of the expression (11) shows that the unconditional mathematical expectation of the random 
vector X  is equal to  hX  and the unconditional variance-covariance matrix of the random 

vector X  is equal to T
XX hhddD  . 

The total probability formula for scalar Gaussian distributions 

Let  , x  and h  in the theorem 2 are scalars. This means that we consider a simple linear 

Gaussian regression of x  on   in the form of h . We will obtain for this case unconditional 

probability density function )(xf  by the direct calculation using the theorem 1. Then, in accordance 

with the theorem 1, we have 
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We can see that the scalar case satisfies the theorem 2.  

A simple example 

We will consider some stochastic controlled object which is described by the conditional 
probability density function ),/( uxf  , where x  is the output scalar variable of the object, u  is 

the input vector variable of the object and   is the vector of the parameters of the object.  

As a rule, it is the Gaussian (normal) probability density function: 

)),,((~),/( XduNuxf  , (15) 

where ),( u  is the regression function of x  on u , ξ is the vector of the parameters of the regression 

function, Xd  is the variance of the internal noise of the object. The description (15) can be 

represented in the form 

 ),( uX , (16) 

where Е is the random variable with Gaussian distribution ),0( dN  and Xdd   is the variance of 

the random variable  . An object with description (15) or (16) is called a multiple regression object. 
The class of the functions represented in the form 





m

j
jj uhu

1

)(),( , (17) 



ДОКЛАДЫ БГУИР  DOKLADY BGUIR 
Т. 19, № 2 (2021)   V. 19, NO. 2 (2021) 

 

63 
 

where )(uhj , mj ,...,2,1  are some functions called basis functions, that are usually used for 

description of the multiple regression function. The function (17) can be written in a vector form as a 
dot product of the vectors h  and ξ:  

TT hhu  ),( , (18) 

where ))(),...,(),(()( 21 uhuhuhuhh m
TT   is the row vector of the basis funtions and 

),...,,( 21 m
T   is the row vector of the parameters. Let us consider the regression function of 

two variables in the following form: 2
121 uuu  . 

Then we will have this regression function in the form of (18) with  
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Gaussian probability density function ),(~)(  dNf  having mean value   and variance-

covariance matrix d . The unconditional moments kX ,  of the output variable of the controlled 

object are of interest: 

 


dfxfx
kE

k
kX )()/(,

. (20) 

They can be easily defined by the theorem 2 as the moments of the Gaussian distribution 

),( hdhdhN T
X

T
   [7]. For instance, in accordance with the theorem 2 we get: 

 T
X h1,

, hdhdh T
X

T
X   2

2, )( , where h  is defined as (19) and d  is the )44(   

variance-covariance matrix of the random vector   (19). 

Conclusion 

The results obtained in theorems 1 and 2 are aimed at solving the dual control problems 

formulated in works [11, 12]. The sequence of the control actions in dual control of the multivariate 

stochastic objects is defined by the functional equations of the dynamic programming which contain 

the integral like (20) subjected to calculation [11]. One of the practical examples is the task  

of the optimal allowance distribution as the task of the dual control considered in the work [12]. 
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