$N_{28}(78)$

УДК 629.7: 681.5.015.44

СТОХАСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА С ПРИМЕНЕНИЕМ ОПТИМАЛЬНОГО ФИЛЬТРА КАЛМАНА

Ю.В. ГРИДНЕВ, А.Ю. РУСЕЦКИЙ, С.А. РАК

Физико-технический институт Национальной академии наук Купревича, 10, Минск, 220141, Беларусь

Поступила в редакцию 25 июня 2013

Рассматриваются замкнутые непрерывные и дискретные системы автоматического управления беспилотного летательного аппарата, в прямой цепи которых последовательно включены автопилот, планер беспилотного летательного аппарата, измерители (датчики) параметров полета и фильтры Калмана. Предложена дискретная модель такой системы и представлены в виде графиков результаты моделирования.

Ключевые слова: системы автоматического управления, фильтр Калмана, устойчивость систем.

Беспилотный летательный аппарат (БЛА) представляет собой летательный аппарат дистанционно управляемый с наземного пункта управления или бортовым оборудованием, совершающий полет по заданной пространственно-временной траектории в автоматическом или полуавтоматическом режимах. Маршрут полета БЛА по точкам прокладывается с помощью электронной карты. Данные маршрута поступают в пилотажно-навигационный комплекс (ПНК) и отрабатываются системами автоматического управления (САУ). Большинство современных САУ выполнены по трехканальной схеме управления углами Эйлера (курса, крена, тангажа) и двухканальной схеме стабилизации высоты и скорости полета. При этом любая САУ БЛА представляет собой замкнутую следящую систему с автопилотом (АП) и планером БЛА в прямой цепи управления [1, 2]. На вход АП САУ подается сигнал заданной траектории в виде *n*-мерного вектора-столбца (приращение координат) $\mathbf{x}_{rp}(t)$. САУ обеспечивает управление полетом БЛА так, чтобы движение его центра масс и его ориентация соответствовали заданной траектории. При этом ошибка отклонения $\mathbf{x}(t) - n$ -мерного вектора-столбца системы управления БЛА от заданного значения $\mathbf{x}_m(t)$ должна быть минимальной $\Delta(t) = \mathbf{x}_m(t) - \mathbf{x}(t) \rightarrow \min$.

Уравнение пространственного движения БЛА с учетом управляющего и возмущающего воздействий можно записать в виде линейной нестационарной системы в матричной форме:

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{U}(t) + \mathbf{G}(t)\mathbf{W}(t), \qquad (1)$$

где x(t) - n-мерный вектор-столбец состояния системы; $A(t) - \kappa$ вадратная матрица состояния системы размера n; U(t) - r-мерный вектор-столбец управления; B(t) -матрица управления размера $n \times r$; W(t) - p-мерный вектор-столбец возмущения; G(t) -матрица возмущения размера $n \times p$.

Измерение координат БЛА как состояния системы происходит циклически с интервалом измерения τ_0 , поэтому все время полета БЛА разбивается на циклы измерения,

2013

длительность которых выбирается из соотношения $\tau_0 = \frac{1}{2\Delta F_{\text{кор}}}$, где $\Delta F_{\text{кор}}$ – ширина спектра

контролируемой координаты. На каждом интервале τ_0 процесс измерения вектора состояния системы $\mathbf{x}(t)$ может быть аппроксимирован простой функцией: постоянной величиной $\mathbf{x}(t) = x_0 = \text{const}$; линейной функцией времени $x(t) = \dot{x}_0 t$; квадратичной функцией времени $\mathbf{x}(t) = \frac{1}{2} \ddot{\mathbf{x}}_0 t^2$ и полиномом.

В любой замкнутой САУ применяется принцип управления по обратной связи, поэтому линейное уравнение управления можно записать в виде U = -Lx, где матрица L выбирается исходя из задачи управления [3–4]. Например, при отсутствии случайного возмущения W, САУ, как фильтр системы с обратной связью по управлению, описывается выражением:

$$\dot{\mathbf{x}}(t) = [\mathbf{A}(t) - \mathbf{B}\mathbf{L}(t)]\mathbf{x}, \qquad (2)$$

где матрица L(t) выбирается из условия обеспечения САУ минимальных ошибок управления в переходном и установившемся режимах.

Координаты вектора состояния $\mathbf{x}(t)$ могут быть измерены датчиками угловых скоростей (ДУС), датчиками линейных ускорений (ДЛУ) и потенциометрическими датчиками углов отклонения рулевых приводов. Выходные сигналы датчиков подвержены влиянию шумов $\mathbf{v}(t)$, поэтому их можно описать с помощью наблюдаемого вектора:

$$\mathbf{z}(t) = \mathbf{H}(t)\mathbf{x}(t) + \mathbf{v}(t), \qquad (3)$$

где $\mathbf{z}(t) - m$ -мерный вектор измерения состояния системы; $\mathbf{v}(t) - m$ -мерный вектор ошибки измерения (шумы измерения); $\mathbf{H}(t)$ – матрица измерения размера $m \times n$, которая связывает состояния системы и ее измерение.

Если $\mathbf{H} = \mathbf{I}$ – единичная матрица размера $n \times n$, то каждая координата измеряется независимо от другой, и если \mathbf{H} – невырожденная матрица $n \times n$, то контролируемый объект (2),(3) является полностью наблюдаемым.

В процессе измерения $\mathbf{z}(t)$ стремятся воспроизвести $\mathbf{x}(t)$ как можно точнее, однако этому мешают динамические ошибки за счет отработки полезного сигнала и флуктационной ошибки за счет наличия возмущающего воздействия.

Задача оптимального оценивания (фильтрации) процесса (1) и (3) сводится к определению алгоритма обработки результатов измерения вектора $\mathbf{z}(t)$, при котором получалась бы несмещенная оценка $\hat{\mathbf{x}}$ вектора \mathbf{x} . В теории оптимальной фильтрации Калмана наилучшей считается такая оценка $\hat{\mathbf{x}}$ вектора \mathbf{x} , при которой дисперсии всех компонентов ошибки оценивания (фильтрации) $\Delta \mathbf{x} = \mathbf{x} - \hat{\mathbf{x}}$ минимальные: min $M[\Delta \mathbf{x}_i^2]$ при i = 1, 2...n. Допущениями калмановской фильтрации являются нормальные белые шумы входного возмущения $\mathbf{W}(t)$ и ошибок измерения $\mathbf{v}(t)$, с нулевыми математическими ожиданиями и корреляционными матрицами $M[\mathbf{W}(t)\mathbf{W}^T(t')] = \mathbf{Q}(t)\delta(t'-t)$ и $M[\mathbf{v}(t)\mathbf{v}^T(t')] = \mathbf{R}(t)\delta(t'-t)$, а также их статистическая независимость.

Учитывая вышесказанное, алгоритм работы оптимального фильтра Калмана (Φ K) для режима стабилизации при **U**(*t*) = 0, можно записать в виде:

$$\hat{\mathbf{x}}(t) = \mathbf{A}(t)\hat{\mathbf{x}}(t) + \mathbf{K}(t)[\mathbf{z}(t) - \mathbf{H}(t)\hat{\mathbf{x}}(t)], \qquad (4)$$

где $\mathbf{K}(t) = \mathbf{P}(t)\mathbf{H}^T \mathbf{R}_z^{-1}(t)$ – матрица коэффициента передачи ФК; $\mathbf{P}(t)$ – корреляционная матрица ошибок фильтрации $\Delta \mathbf{x}$ размера $n \times n$; $\mathbf{R}(t)$ – матрица интенсивности ошибок измерения $\mathbf{v}(t)$.

На рис. 1, согласно выражениям (1) и (4), представлена общая структурная схема стационарного контролируемого процесса линейной системы канала управления БЛА и оптимального ФК.

Рис. 1. САУ с фильтром Калмана

Оптимальный ФК представляет собой замкнутую систему автоматического управления, охваченную цепью отрицательной обратной связи с коэффициентом $\mathbf{H}(t)$. В таком ФК в прямой цепи последовательно соединены усилитель с регулируемым матричным коэффициентом $\mathbf{K}(t)$ и модель динамики системы $\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t)$, на вход которой подается сигнал $\mathbf{K}(t)[\mathbf{z}(t) - \mathbf{H}(t)\hat{\mathbf{x}}(t)]$. Для вычисления $\mathbf{K}(t)$ необходимо определить корреляционную матрицу ошибки фильтрации $\mathbf{P}(t)$ из уравнения Риккати [1]:

$$\dot{\mathbf{P}}(t) = \mathbf{A}(t)\mathbf{P}(t) + \mathbf{P}(t)\mathbf{A}^{T}(t) - \mathbf{P}(t)\mathbf{H}^{T}(t)\mathbf{R}^{-1}(t)\mathbf{H}(t)\mathbf{P}^{T}(t) + \mathbf{G}(t)\mathbf{Q}(t)\mathbf{G}^{T}(t),$$
(5)

где $\mathbf{P}(t)\mathbf{H}^{T}(t)\mathbf{R}^{-1}(t)\mathbf{H}(t)\mathbf{P}^{T}(t)$ – корректирующий член, ограничивающий рост корреляционной матрицы ошибок фильтрации.

Если сигнал управления формируется по оценке состояния $\hat{\mathbf{x}}(t)$ в виде $\mathbf{U}(t) = -\mathbf{L}(t)\hat{\mathbf{x}}(t)$, тогда уравнение оптимального ФК нужно записать в виде:

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}(t)\hat{\mathbf{x}}(t) - \mathbf{B}(t)\mathbf{L}(t)\hat{\mathbf{x}} + \mathbf{K}(t)[\mathbf{z}(t) - \mathbf{H}(t)\hat{\mathbf{x}}(t)].$$
(6)

Оценка $\hat{\mathbf{x}}$ используется для замыкания отрицательной обратной связи стационарной системы $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U} + \mathbf{G}\mathbf{W}$ в виде $\mathbf{U} = -\mathbf{L}\hat{\mathbf{x}}$. При выборе матрицы \mathbf{L} добиваются, чтобы система $\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{L})\mathbf{x}$ была асимптотически устойчива. Тогда ФК для замкнутой системы также будет асимптотически устойчив.

Бортовая аппаратура управления БЛА состоит из отдельных блоков, которые представляют собой высокопроизводительные микроконтроллеры. В таких системах используются дискретные преобразования и сигналы, поэтому ранее полученные алгоритмы необходимо представить виде. Переход от векторно-матричного В дискретном дифференциального уравнения (1) к разностному векторно-матричному уравнению осуществляется с помощью переходных матриц состояния системы, возмущения и управления. Любая переходная матрица определяет состояние процесса в пределах его периода дискретизации. Например, переходная матрица состояния системы может быть представлена в виде:

$$\begin{cases} \mathbf{A}(t,\tau) = \mathbf{x}(t)\mathbf{x}^{-1}(\tau) = e^{A(t-\tau)} = \mathbf{F}(t)\mathbf{F}^{-1}(\tau) = \mathbf{F}_{k+1,k} \\ k = 0, 1, 2... \end{cases}$$
(7)

Выражение (1) движения БЛА как динамической системы в дискретном виде может быть записано как:

$$\mathbf{x}_{k+1} = \mathbf{F}_{k+1,k} \mathbf{x}_k + \mathbf{B}_{k+1,k} \mathbf{U}_k + \mathbf{W}_k, \qquad (8)$$

где \mathbf{x}_{k} – вектор состояния динамической системы длиной *m*; $\mathbf{F}_{k+1,k}$ – *m*×*m* переходная матрица состояния системы; \mathbf{U}_{k} – вектор управления длиной *l*; $\mathbf{B}_{k+1,k}$ – *m*×*l* переходная матрица управления; \mathbf{W}_{k} – вектор нормальных шумов с нулевым средним $M[\mathbf{W}_{k}] = 0$ и корреляционной матрицей $M[\mathbf{W}_{k}\mathbf{W}_{i}] = \mathbf{Q}_{k}\delta(k-j)$.

Сигнал на выходе измерительной системы как последовательность ошибок измерения описывается выражением

$$\mathbf{z}_{k+1} = \mathbf{H}_{k+1}\mathbf{x}_{k+1} + \mathbf{v}_{k+1}, \tag{9}$$

где \mathbf{z}_k – вектор наблюдений длиной *m*; \mathbf{H}_k – *n×m*-матрица наблюдений; \mathbf{v}_k – вектор нормальных шумов с нулевым средним $M[\mathbf{v}_k] = 0$ и корреляционной матрицей $M[\mathbf{v}_k\mathbf{v}_j] = \mathbf{R}_k \delta(k-j)$. Принцип построения ФК состоит в том, что для каждого дискретного момента времени *k* вначале вычисляется априорная оценка текущего состояния системы $\hat{\mathbf{x}}_{k+1,k}^-$ по прошлым наблюдениям $z_1, z_2...z_k$ (1-ый шаг – предсказание):

$$\hat{\mathbf{x}}_{k+1,k}^{-} = \mathbf{F}_{k+1,k}^{-} \hat{\mathbf{x}}_{k,k}^{+} + \mathbf{B}_{k+1,k}^{-} \mathbf{U}_{k,k}^{-} + \mathbf{W}_{k,k}^{-},$$
(10)

а затем вычисляется апостериорная уточняющая оценка $\hat{\mathbf{x}}_{k+1,k+1}^{*}$

$$\hat{\mathbf{x}}_{k+1,k+1}^{+} = \hat{\mathbf{x}}_{k+1,k}^{-} + \mathbf{K}_{k+1}(\mathbf{z}_{k+1} - \mathbf{H}_{k+1}\hat{\mathbf{x}}_{k+1,k}^{-}).$$
(11)

Выражение (10) соответствует уравнению (8) непрерывной динамической системы канала управления и представляет собой дискретный фильтр системы в структуре ФК. Первый шаг предсказания на «шаг вперед» предполагает умножение оценки $\hat{\mathbf{x}}_{k,k}$ на переходную матрицу состояния $\mathbf{F}_{k+1,k}$ и представляет собой динамическую экстраполяцию предыдущей оценки. Второй шаг уточнения (11) добавляет корректирующий член $\mathbf{K}_{k+1}(\mathbf{z}_{k+1} - \mathbf{H}_{k+1}\hat{\mathbf{x}}_{k+1,k})$ к первому предсказанию. Корректирующий член определяется с использованием цепи отрицательной обратной связи как сигнал ошибки между входным сигналом измерительной системы \mathbf{z}_{k+1} и сигналом обратной связи с выхода ФК с учетом вектора состояния измеряемой системы $\hat{\mathbf{x}}_{k}$, является рекуррентной, т.е. при вычислении последовательности оценок $\hat{\mathbf{x}}_{k-1}, \hat{\mathbf{x}}_{k+1}, \dots$ следующее значение оценки вычисляется на основе предыдущего. Такая последовательность вычислений определяется зависимостью последующего состояния системы от всей предыстории поведения системы в прошлом и от значений вновь поступающих входных воздействий. Согласно выражениям (8)–(11), схема динамической системы с обратной связью с измерителем и ФК в дискретном виде показана на рис. 2.

Оптимальный ФК, представленный на рис. 2, состоит из модели динамического процесса (фильтра системы), выполняющей функцию предсказания, и корректирующей цепи обратной связи, с помощью которой в модель в качестве входного сигнала коррекции подается с учетом коэффициента \mathbf{K}_{k+1} , сигнал ошибки между измеренным состоянием динамической системы и оценкой ФК этого состояния. Коэффициент \mathbf{K}_{k+1} определяется следующими выражениями [1]:

$$\begin{cases} \mathbf{K}_{k+1} = \mathbf{P}_{k+1,k}^{-} \mathbf{H}_{k+1}^{T} [\mathbf{H}_{k+1} \mathbf{P}_{k+1,k}^{+} \mathbf{H}_{k+1}^{T} + \mathbf{R}_{k+1}]^{-1}, \\ \mathbf{P}_{k+1,k}^{-} = M[(\mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1})(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k})^{T}] = \mathbf{F}_{k+1,k} \mathbf{P}_{k,k} \mathbf{F}_{k+1,k}^{T} + \mathbf{G}_{k+1,k} \mathbf{Q}_{k,k} \mathbf{G}_{k+1,k}^{T}, \\ \mathbf{P}_{k+1}^{+} = M[(\mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1})(\mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1})^{T}] = [\mathbf{I} - \mathbf{K}_{k+1} \mathbf{H}_{k+1}] \mathbf{P}_{k+1,k}, \end{cases}$$
(12)

где $\mathbf{P}_{k+1,k}^-$ и \mathbf{P}_{k+1}^+ – корреляционные матрицы ошибок оценок нормальных процессов для 1-ого шага-предсказания при k+1, k и 2-ого шага-уточнения при k+1.

Рис. 2. Дискретная САУ с фильтром Калмана

Разработана дискретная стохастическая модель САУ с ФК, которая протестирована при воздействии входного белого шума и при воздействии единичной функции в качестве сигнала управления адитивно с белым шумом. Перед моделированием были заданы: переходная матрииз состоящия системи $\mathbf{F} = \begin{bmatrix} 1 & 0, 25 \end{bmatrix}$ с учетом нервой произволной полезиого сигнала и

матрица состояния системы $\mathbf{F} = \begin{bmatrix} 1 & 0, 25 \\ 0 & 1 \end{bmatrix}$, с учетом первой производной полезного сигнала, и

матрицы шумов W и v в виде констант.

На рис. 3–6 показаны вид и энергетический спектр сигнала управления просуммированный аддитивно с сигналом белого шума при его прохождении по блокам модели в узлах 1–4 (рис. 2): на рис. 3 показаны сигнал управления на входе и выходе модели. На рис. 4–6 сверху показан вид сигнала в узле, снизу – энергетический спектр сигнала в узле.

Из представленных рисунков видно, что разработанная модель САУ с ФК работает корректно даже с сильно зашумленными сигналами. Такая модель позволяет исследовать широкий круг проблем, связанных со статистическими характеристиками белых и окрашенных шумов, с динамической устойчивостью и управляемостью каналов САУ БЛА с учетом сходимости ФК.

Рис. 3. Сигнал управления А – на входе (узел 2) модели фильтра, Б – на выходе модели (узел 3)

STOCHASTIC SIMULATION OF THE AUTOMATIC CONTROL SYSTEMS OF UNMANNED AIRCRAFT USING OPTIMAL KALMAN FILTER

Y.V. GRIDNEV, A.Y. RUSETSKI, S.A. RAK

Abstract

Closed loop continuous and discrete automatic control systems of unmanned aircraft which contain the autopilot, the glider, sensors and Kalman filters in a straight chain are considered. Discrete model of the system and present in graphs simulation results is proposed.

Список литературы

- 1. Матвеев В.В., Располов В.Я. Основы построения бесплатформенных инерциальных навигационных систем. СПб, 2009.
- 2. Козлов В.И. Системы автоматического управления летательным аппаратом, М., 1979.
- 3. *Малкин В.А., Гриднев Ю.В., Пальцев А.Н., Цанава А.А.* Робастный автопилот канала тангажа / Патент РБ № 8404.
- 4. *Малкин В.А., Гриднев Ю.В., Пальцев А.Н., Яцына Ю.Ф.* Робастный автопилот канала крена / Патент РБ № 9229.