№ 8(70)

УДК 621.382.621.395

ВЛИЯНИЕ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ НА ВСТРЕЧНЫЙ КАНАЛ ПРИЕМА В ПАССИВНЫХ ОПТИЧЕСКИХ СИСТЕМАХ, ВЫЗВАННЫХ ВЫНУЖДЕННЫМ РАССЕЯНИЕМ МАНДЕЛЬШТАМА–БРИЛЛЮЭНА

В.Ю. БУНАС, Д.В. ГЛУЩЕНКО, В.Н. УРЯДОВ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 23 мая 2012

Произведен анализ нелинейных искажений в пассивных оптических сетях (PON), вызванных вынужденным рассеянием Мандельштама-Бриллюэна. Показано, что начиная с некоторой мощности накачки отношение сигнал/шум на входе приемника встречного направления резко уменьшается, что ведет к повышению вероятности ошибки.

Ключевые слова: рассеяние света Мандельштама-Бриллюэна, пассивная оптическая сеть.

Введение

В настоящее время ведутся активные исследования по совершенствованию существующих оптических сетей доступа. Технологии пассивных оптических сетей (PON) предлагают обеспечить до 64...128 абонентов в пересчете на одно волокно интерактивными широковещательными услугами передачи данных с общей пропускной способностью линии связи до 2,5...10 Гбит/с. Следует отметить, что потенциал таких сетей далеко еще не исчерпан. Как показывают расчеты, увеличение числа абонентов и скорости передачи в сетях PON возможно с повышением уровня вводимой мощности и применением полососберегающих видов модуляции. Причем, как на уровень вводимой мощности, так и на многопозиционные виды модуляции накладываются ограничения, связанные с нелинейными искажениями света в оптическом волокне. Наименьшим порогом чувствительности оптического волокна к появлению нелинейных искажений обладает эффект вынужденного рассеяния Мандельштама-Бриллюэна (BPMБ) [1]. В общем случае для пассивной системы передачи эффект ВРМБ приводит к снижению отношения сигнал/шум (ОСШ) на приемной стороне и, как следствие – повышению вероятности ошибки.

Теоретический анализ

Классическая архитектура сети PON с временным разделением каналов предполагает дуплексный режим работы в одном волокне [2], [3]. В этом случае нисходящий поток от распределительного центра на длине волны 1550 нм вводится в абонентскую распределительную сеть и с помощью пассивного делителя мощности (сплиттера), расщепляется и доводится до абонентских терминалов (рис. 1). В свою очередь абонентские терминалы в порядке очереди осуществляют обратную передачу данных на длине волны 1310 нм.

Альтернативные варианты повышения пропускной и нагрузочной способностей линии связи в сетях PON связаны с применением техники волнового уплотнения каналов, где каждому абоненту отводится отдельная пара длин волн для приема и передачи [4]. Дальнейшим увеличением эффективности является предложенная в [5, 6] передача встречных сигналов (к абоненту и от абонента на одной длине волны), однако в подобных системах возможно влияние встречных каналов вследствие перехода сигналов (частично или полностью) из-за нелинейных

2012

явлений, вызванных эффектом ВРМБ. В этом случае при достижении некоторого критического значения P_{TH} происходит существенное рассеяние света на акустических фононах среды, которое может попасть в основной канал приема [1].

Рис. 1. Схема дуплексной сети PON с временным разделением каналов

Целью данной работы является оценка влияния ВРМБ на помехоустойчивость встречных цифровых потоков (600, 1200, 2400, 4800 Мбит/с). Особенно это опасно для абонентского цифрового потока, поскольку протяженность магистрального участка сети намного больше абонентского.

Для типичных волокон G.652 и G.657, применяемых в PON (рис. 1), критическая мощность P_{TH} может быть оценена по формуле:

$$P_{TH} = 21 \frac{KA_{eff}}{g_B L_{eff}} \frac{\Delta v_p + \Delta v_B}{\Delta v_B},$$
(1)

где g_B – коэффициент усиления Бриллюэна, м/Вт; K – постоянная состояния поляризации, [7]; A_{eff} – эффективная площадь поперечного сечения жилы волокна, м²; Δv_p – полоса накачки источника излучения, Гц; Δv_B – ширина спектральной линии Бриллюэна, Гц; L_{eff} – эффективная длина волокна, которая определяется

$$L_{eff} = \frac{1 - \exp(-\alpha L)}{\alpha},\tag{2}$$

где α – коэффициент затухания волокна, м⁻¹; *L* – длина волокна, м. Типичные параметры приведенных выражений даны в таблице [1,8].

Параметр	Значение	
Коэффициент усиления Бриллюэна, $g_{\scriptscriptstyle B}$	4·10 ⁻¹¹ м/Вт	
Эффективная площадь поперечного сечения жилы волокна, $A_{e\!f\!f}$	5.10^{-11} m^2	
Ширина спектра Бриллюэна, Δv_B	31,2 МГц	
Температура, Т	300 K	
Смещение частоты Бриллюэна, v_B		
– на длине волны 1,31 мкм – на длине волны 1,55 мкм	13,194 ГГц 11,151 ГГц	
Коэффициент затухания волокна, α	$5 \cdot 10^{-5} \text{ m}^{-1}$	

Габлица 1.	Типовые	параметры	одномодового	оптического	волокна
------------	---------	-----------	--------------	-------------	---------

Процесс ВРМБ протекает с возникновением стоксовой волны P_{ST} , распространяющейся в противоположном направлении накачки P_{OLT} (рис. 2). Это связано с тем, что при накачке выше некоторого порогового уровня P_{TH} мощность излучения генерирует в волокне акустическую волну, приводящую к периодической модуляции показателя преломления волокна (см. рис. 2, *a*). Часть энергии распространяющегося в прямом направлении сигнала с частотой v_p рассеивается на волнах показателя преломления назад со сдвигом частоты v_B (см. рис. 2, δ). Эта вторая волна называется волной Стокса с мощностью P_{ST} [1].

Рис. 2. Система передачи сети PON (*a*) и диаграмма, поясняющая процесс рассеяния света вследствие эффекта ВРМБ (*б*)

Для того чтобы оценить влияние нелинейных искажений ВРМБ в PON, необходимо рассчитать мощность стоксовой компоненты P_{sT} , определить как она влияет на распространение и взаимодействие сигналов и как участвует в процессе фотодетектирования на приемной стороне.

Сети PON относятся к дуплексным двунаправленным системам передачи с разносом приема и передачи по длине волны на стороне OLT (рис. 2, *a*), при этом в канале связи будут присутствовать две стоксовые компоненты, по одной в каждом из направлений (рис. 2). Если осуществляются одновременные передача и прием, то фактически стоксовые сигналы получаются в результате взаимодействия сигнала накачки с одной стороны и встречного сигнала приема с другой. Вместе с тем, на начальном этапе важно оценить возникновение стоксовой компоненты без учета влияния встречного сигнала.

Для этого в работе при определении зависимости P_{st} от мощности накачки P_{OLT} был использован подход [8] в предположении, что сигнал P_{OLT} представлен в коде NRZ (без возврата к нулю) с гауссовской аппроксимацией линейных импульсов, для которого появление логических нулей и единиц равновероятно и статистически независимо. Тогда стоксовая мощность P_{st} получается в результате свертки профиля усиления Бриллюэна (3) и накачки (4):

$$g(\mathbf{v}) = g_B \exp\left(-4\ln 2\frac{(\mathbf{v} - \mathbf{v}_B)^2}{(\Delta \mathbf{v}_B)^2}\right),\tag{3}$$

$$P_{OLT}(\mathbf{v}) = \frac{P_0}{\tau \sqrt{2\pi (\Delta \mathbf{v}_p)^2}} \exp\left(-\frac{(\mathbf{v} - \mathbf{v}_p)^2}{2(\Delta \mathbf{v}_p)^2}\right),\tag{4}$$

где P_0 – пиковая мощность, Вт; τ – условная длительность импульса, с.

Для накачки, представленной последовательностью гауссовых импульсов (4), полная стоксовая мощность определяется выражением (5) при условии, что сигнал накачки распространяется по волокну длиной L согласно закону Бугера-Ламберта, т.е. с затуханием $P_{OLT}(\mathbf{v},L) = P_{OLT}(\mathbf{v}) \cdot e^{-\alpha L}$.

$$P_{ST}(P_{OLT}) = \frac{2k_B T v_p \sqrt{\pi}}{v_B} \sqrt{2(\Delta v_p)^2 + \frac{(\Delta v_B)^2}{4\ln 2}} \cdot \frac{\exp(G_b(P_{OLT}))}{\sqrt{G_b(P_{OLT})}} \cdot \left[1 - \alpha L_{eff} \left(1 - (G_b(P_{OLT}))^{-1}\right)\right],$$
(5)

83

где k_{B} – постоянная Больцмана; T – температура, К; v_{p} – центральная частота несущей сигнала, Гц; v_{B} – смещение частоты Бриллюэна (частота акустических фононов), Гц; $G_{b}(X)$ – функция усиления ВРМБ при полной мощности накачки X, определяется по формуле:

$$G_b(X) = \frac{g_B X L_{eff}}{A_{eff} \sqrt{8 \ln 2 \cdot (\Delta v_p)^2 / (\Delta v_B)^2 + 1}}.$$
(6)

На рис. 3 приведены примеры численного расчета выражения (5) при различных скоростях следования гауссовых импульсов (600, 1200, 2400, 4800 Мбит/с) на расстоянии 20 км между OLT и ODN, а также рассчитаны по (1) пороговые мощности накачки $P_{OLT} = P_{TH}$.

Как показывают расчеты, в среднем удвоение скорости передачи приводит к увеличению порога вводимой мощности на 3 дБ, при этом, если достигается определенный порог P_{TH} , то, в зависимости от скорости цифрового потока, в спектре сигналов будут присутствовать боковые стоксовые составляющие на частоте $v_p - v_B$ с уровнем мощности, превышающей релеевское рассеяние [1]. Дальнейшее увеличение вводимой мощности ведет к еще большему усилению стоксовой волны. Графики, представленные на рис. 4, наглядно поясняют динамику данного процесса, где первый ряд зависимостей дан для случая предпороговой накачки, а второй ряд – с послепороговой накачкой.

Рис 4. Спектральные плотности сигналов накачки и стоксовых компонент при различных скоростях передачи

Из рис. 4 видно, что при накачке вблизи пороговых величин P_{TH} , мощность стоксовых компонент незначительна по сравнению с основным сигналом, и, вместе с тем, быстрее возрастает для низкоскоростных потоков при дальнейшем увеличении мощности накачки. Причиной тому является более высокая крутизна роста зависимости стоксовой мощности от накачки (рис. 3).

На преобразование энергии накачки в стоксовую волну влияет не только сама накачка, но также протяженность эффективной длины линии связи. Формула (5) позволяет также оценить зависимость P_{st} от L_{eff} , рис. 5.

Рис. 5. Графики зависимостей полной стоксовой мощности от эффективной длины волокна при скоростях передачи 600 Мбит/с (*a*) и 1200 Мбит/с (б)

Одним из основных параметров приемных устройств является чувствительность приемников. В оптических системах передачи применяются два типа приемников: p-*i*-n и лавинный фотодетектор (ЛФД). P-*i*-n фотоприемник характеризуется простой конструкцией исполнения и меньшей стоимостью. Его чувствительность определяется [9]:

$$\overline{P}_{p-i-n} = \frac{Q_{\text{out}}hc}{\eta q \lambda_p} \sqrt{\overline{i}_{\text{III}}^2 + \left(\frac{\eta q \lambda_p}{hc} P_{ST}(P_{OLT})\right)^2}, \qquad (7)$$

где Q_{out} – параметр, характеризующий вероятность ошибки (в нашем случае $Q_{out} = 6,3$ что соответствует вероятности ошибки 10⁻¹⁰; h – постоянная Планка; c – скорость света; η – квантовая эффективность – величина, показывающая эффективность преобразования фотон-электрон равная для современных фотоприемников η =0,75–0,9; q – заряд электрона; λ_p – длина волны оптического излучения; $P_{ST}(P_{OLT})$ – полная мощность стоксовой компоненты, определена (5); $\sqrt{\tilde{t}_{111}^2}$ – среднеквадратичное значение шумового тока приемного модуля, зависит от типа фотоприемника излучения (p-i-n, $\Pi \Phi Д$) и условий приема (η = 0,8; T = 300 K; λ_p = 1,55 мкм).

Для сравнения работы ЛФД фотоприемника с *p-i-n* будем использовать те же параметры чувствительности [9]:

$$\overline{P}_{\Pi\Phi\Pi} = \frac{Q_{\text{out}}hc}{\eta q \lambda_{p}} \sqrt{\left(\frac{\sqrt{\overline{i}_{\Pi}^{2}}}{M} + q Q_{\text{out}}F \cdot In_{1} \cdot B\right)^{2} + \left(\frac{\eta q \lambda_{p}}{hc}P_{ST}\left(P_{OLT}\right)\right)^{2}}, \qquad (8)$$

где *М* – коэффициент лавинного умножения; *F* – шум-фактор умножения; *In*₁ – интеграл Персоника; *B* – скорость цифрового потока [9].

Ниже приведены типовые значения чувствительности *p-i-n* и ЛФД фотоприемников в зависимости от скорости передачи. Значения получены по (7) и (8) при мощности накачки $P_{OLT} = 1$ мВт.

Таблица 2. Параметры чувствительности приемников *p-i-n* и ЛФД

Чувствительность при-	Скорость передачи, Мбит/с			
емника, дБм	600	1200	2400	4800
p-i-n	-28,73	-23,42	-17,05	-10,11
ЛФД	-28,72	-23,41	-17,04	-10,11

Как видно из табл. 2, значения чувствительности для *p-i-n* и ЛФД фотоприемников практически одинаковы, следовательно, нет необходимости отдавать предпочтение определенному типу приемника при учете эффекта ВРМБ, поскольку на величину чувствительности в обоих случаях будет одинаково влиять стоксовая составляющая $P_{ST}(P_{OLT})$, которая преобладает над другими видами шумов при мощностях накачки выше 1 мВт, стандартных для сетей PON.

Для сетей PON, работающих на коротких дистанциях (до 20 км), в общем случае эффект ВРМБ приводит к снижению ОСШ вследствие существенного возрастания стоксовой волны P_{ST} , которая помимо основного сигнала попадает в канал приема приемника встречного направления. Оценим влияние P_{ST} на ОСШ в канале приема OLT в предположении затухания встречного сигнала P_{OTN} [10]:

$$OCIII_{OLT} = \frac{\left(\frac{\eta q \lambda_p}{hc}\right) P_{OTN} \cdot 10^{\frac{-\alpha L + N_n \alpha_n + N_p \alpha_p + \alpha_{ij}}{10}}}{\sqrt{\bar{i}_{III}^2 + \left(\frac{\eta q \lambda_p}{hc}\right)^2 \left(P_{ST}(P_{OLT})\right)^2}},$$
(9)

где P_{OTN} – полная мощность излучения, вводимая в волокно на стороне абонентского терминала OTN; N_n, N_p – число неразъемных и разъемных соединителей, соответственно; α_n, α_p – затухание в неразъемных и разъемных соединителях, соответственно; α_{ij} – затухание оптической мощности при передаче из порта *i* в порт *j* сплиттера или WDM мультиплексора.

Предельный случай оценки ОСШ в РОМ может быть получен по уровню чувствительности фотоприемника (*p-i-n*, ЛФД). Как показано в работе [9], чувствительность оптического приемника начинает падать с увеличением скорости передачи, а, следовательно, для обеспечения заданной вероятности ошибки следует повышать уровень сигнала на входе приемника. Так для обеспечения заданной вероятности ошибки 10⁻¹⁰ требуется ОСШ не меньше 16 дБ. С учетом помехи, которая вызвана стоксовой волной, реальная величина ОСШ может меняться.

На рис. 6 представлены результаты расчетов ОСШ в зависимости от мощности накачки при различных скоростях цифровых потоков для приемников *p-i-n* и ЛФД. Максимальные уровни ОСШ соответствуют вероятности ошибки 10⁻¹⁰. Указанные зависимости получены по (9) и из значений табл. 2. В частности, на рис. 6 показано, что эффект ВРМБ носит пороговый характер возникновения, т.е. начиная с некоторого уровня вводимой мощности происходит существенное усиление стоксовой волны, которая попадает в канал приема, а соответственно это ведет к ухудшению ОСШ. Например, для цифрового потока 2400 Мбит/с порог составил 10 дБм (рис. 6). При этом низкоскоростные цифровые потоки обладают относительно меньшим допустимым диапазоном вводимой мощности, чем цифровые потоки с большей скоростью следования линейных импульсов, а, следовательно, для высокоскоростных цифровых потоков существенных ограничений по ВРМБ нет или они незначительны.

Рис. 6. Графики зависимостей ОСШ от мощности накачки для фотоприемников *p-i-n* и ЛФД

Заключение

Таким образом, при обосновании бюджета мощности в дуплексных системах связи следует учитывать ограничения по уровню вводимых сигналов, поскольку превышение указанных порогов P_{TH} приводит к увеличению рассеяния сигнала в сторону центрального узла сети PON, что, в конечном счете, приводит как к деградации качества передатчика, так и ухудшению ОСШ приемника. Применение оптических фильтров, установленных на центральном узле, может частично решить эту проблему, однако к ним предъявляются очень высокие требования изза малого сдвига частоты Бриллюэна v_{R} .

IMPACT OF STIMULATED MANDEL'SHTAM–BRILLOUIN SCATTERING ON THE RECEIVE CHANNEL IN PASSIVE OPTICAL SYSTEMS

V.Y. BUNAS, D.V. GLUSHCHENKO, V.N. URYADOV

Abstract

An analysis of nonlinear distortion in passive optical networks (PON), due to stimulated Mandel'shtam – Brillouin scattering is performed. It is shown that starting with a pump power of the signal / noise ratio at the input of the receiver opposite direction decreases sharply, which leads to increased likelihood of errors.

Список литературы

1. Agrawal G.P. Nonlinear Fiber Optics. New York, 2001.

2. Рекомендации ITU-T G.984.3 (03/2008) Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification // Международный Союз Электросвязи. Женева, 2009.

3. Рекомендации ITU-T G.983.1 (01/2005) Оптические системы широкополосного доступа, базирующиеся на пассивной оптической сети (PON) // Международный Союз Электросвязи. Женева, 2005.

4. Banerjee A. // J. Optical Networking. 2005. Vol. 21, №11. P. 737–758.

5. Урядов В.Н., Глущенко Д.В. // Тез. докл. межд. науч.-техн. конф., посв. 45-лет. БГУИР. Минск, 2009. С. 19

6. Урядов В.Н., Глущенко Д.В. // Тез. докл. междунар. науч.-техн. конф. посв. 45-лет. БГУИР. Минск, 2009. С. 20.

7. Van Deventer M.O., Boot A.J. // J. Lightwave Technol. 1994. Vol. 12, № 4. P. 585–590.

8. Голышев В.Ю., Жуков Е.А., Самарцев И.Э. и др. // Журн. техн. физики. Т. 74, № 7. 2004. С. 66–69.

9. Урядов В.Н., Стункус Ю.Б. // Весці БДПУ. 2006. № 4. С. 5-7.

10. Урядов В.Н., Глущенко Д.В. // Вестник связи. 2011. № 2(106). С. 43-46.