Доклады БГУИР 2018, № 8 (118)

УДК 621.794.61

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПЕРЕНОСА ЭЛЕКТРОНОВ В ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЕ НА ОСНОВЕ ГРАФЕНА

В.В. МУРАВЬЕВ, В.Н. МИЩЕНКО

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

Поступила в редакцию 16 мая 2018

Аннотация. Представлены результаты моделирования с использованием метода Монте-Карло процессов переноса электронов в трехмерной полупроводниковой структуре, содержащей одиночный слой графена. Использование графена, который обладает высокой подвижностью носителей заряда, высокой теплопроводностью и рядом других положительных свойств, является перспективным для создания новых полупроводниковых приборов с хорошими выходными характеристиками. В результате моделирования получены зависимости скорости, средней энергии, подвижности, коэффициента диффузии от длины структуры и напряженности электического поля в полупроводниковой структуре, содержащей слой графена и области из материала карбида кремния типа 4H-SiC.

Ключевые слова: графен, карбид кремния, процессы переноса электронов, метод Монте-Карло.

Abstract. The results of modeling of electron transfer processes in a three-dimensional semiconductor structure containing a single layer of graphene using the Monte-Carlo method are presented. The use of graphene, which has a high mobility of charge carriers, high thermal conductivity and a number of other positive properties, is promising for the creation of new semiconductor devices with good output characteristics. As a result of modeling, the dependences of the velocity, average energy, mobility, diffusion coefficient on the structure length and electric field intensity in a semiconductor structure containing a graphene layer and a region of a 4H-SiC silicon carbide material are obtained.

Keywords: graphene, silicon carbide, electron transfer processes, Monte Carlo method.

Doklady BGUIR. 2018, Vol. 118, No. 8, pp. 55-62 Simulation of the processes of the electrons transfer in the semiconductor structure based on graphene V.V. Murav'ev, V.N. Mishchenka

Введение

Исследование процессов переноса носителей заряда для полупроводниковых соединений, содержащих графен, позволяет лучше понять, как те или иные изменения в конструкциях влияют на выходные характеристики приборов, и является актуальной задачей, которая связана с разработкой быстродействующих и мощных приборов диапазонов СВЧ и КВЧ [1-4]. Исследования процессов переноса носителей заряда выполнялось в [5] с помощью метода возмущения функционала электронной плотности (DFPT) в рамках теории функционала электронной плотности (DFT). Однако были получены зависимости средней скорости электронов от напряженности электрического поля для одиночного слоя графена лишь в диапазоне небольших значений напряженности электрического поля, которые не превышали величину приблизительно 0,2 кВ/см, и на основе этой зависимости была привелена оценочная величина подвижности электронов, приблизительно равная 9,5·10⁵ см²/(В·с) при температуре 300 К. В ряде работ делается попытка оценки средней скорости электронов через величину среднего тока, который протекает через полупроводниковую [6-7]. Однако, структуру как показывает анализ. наличие полупроводниковой подложки, на которой располагается слой графена. приводит к значительному изменению характеристик процессов переноса носителей заряда [6]. В работе [7] на основе оценки величины среднего тока приводятся результаты расчета средней дрейфовой скорости электронов с использованием метода Монте-Карло в диапазоне значений напряженности электрического поля до 10 кВ/см, однако не учитывается один из важнейших механизмов рассеивания – электрон-электронное рассеивание.

В полупроводниковых приборах использование метода Монте-Карло для анализа процессов дрейфа носителей заряда позволяет учесть все их механизмы рассеяния и получить зависимости распределения для стационарных и нестационарных процессов [4, 8, 9]. В данной статье на основе метода статистического моделирования были выполнены исследования основных характеристик процесса переноса носителей заряда в полупроводниковом приборе с использованием одиночного слоя графена в расширенном диапазоне значений напряженности электрического поля с учетом наиболее полного числа механизмов рассеивания электронов. Для этих целей был разработан вычислительный алгоритм, составлена и отлажена программа численного моделирования методом Монте-Карло в трехмерном пространстве.

Метод и особенности моделирования параметров переноса электронов

Известно, что результаты моделирования с использованием метода Монте-Карло зависят от значений основных электрофизических параметров материала и параметров модели зоны проводимости [9, 11–13]. Были исследованы особенности дрейфа электронов в трехмерной полупроводниковой структуре, содержащей слой графена, при температуре T = 300 К (рис. 1, *a*). Рассмотрены закономерности физического процесса переноса носителей заряда для двух вариантов расположения одиночного слоя (или монослоя) графена.

Для первого варианта одиночный слой графена (область, обозначенная цифрой 2 на рис. 1, a) располагается между двумя областями, выполненными из материала карбида кремния типа 4H-SiC (обозначенными цифрами 1 и 3 на рис. 1, a). Канал дрейфа электронов в виде слоя графена, обозначенного цифрой 2 на рис. 1, a, формировался вдоль координаты x. Две области, обозначенные цифрами 1 и 3 на рис. 1, a, выполняют функции ввода и вывода электронов для взаимодействия с областью 2. Моделирование процессов переноса электронов выполнялось для областей структуры, которые обозначены цифрами 1–3. Контактные области металлизации, обозначенные цифрами 4 и 5 на рис. 1, a, при моделировании не рассматривались и использовались в процедуре метода Монте-Карло для ввода или вывода электронов за пределы анализируемой структуры. Фактически рассматривался одиночный слой графена в подвешенном состоянии без подложки.

Для второго варианта одиночный слой графена, обозначенный цифрой 1 на рис. 1, δ , располагался на подложке, выполненной из материала карбида кремния типа 4H-SiC, обозначенной цифрой 2 на рис. 1, δ . Моделирование процессов переноса электронов выполнялось для областей структуры, которые обозначены цифрами 1–2. Контактные области металлизации, обозначенные цифрами 3 и 4 на рис. 1, δ , при моделировании не рассматривались и использовались в процедуре метода Монте-Карло для ввода или вывода электронов за пределы анализируемой структуры. Фактически рассматривался вариант конструкции структуры, исследованный экспериментально в [6].

Рис. 1. Структуры полупроводниковых приборов, содержащих графен, без подложки (*a*) и с подложкой из материала 4H-SiC (б)

При моделировании выбирались следующие размеры слоя полупроводниковой структуры. Значение параметра DLY равнялось $0,47 \cdot 10^{-9}$ м, что соответствует обычно выбираемой толщине слоя графена. Значение параметра DLX (условно – длина структуры) изменялось в процессе моделирования от значения $1 \cdot 10^{-7}$ м до значения $1 \cdot 10^{-5}$ м, а ширина структуры (третья координата *z* не показана) равнялась $1 \cdot 10^{-6}$ м (рис. 1, *a*). Величина параметров DAB и DAA принималась одинаковой и равной 20 % от значения параметра DLX. Количество элементарных ячеек (шагов) для слоя полупроводниковой структуры по длине равнялось 100, по высоте – 30, а по ширине – 1. Количество моделируемых частиц для всей структуры со слоем графена и областями (или подложкой) из 4H-SiC принималось равным 30000. Значение параметра DLS для второй конструкции выбиралось равным 0,141 $\cdot 10^{-7}$ м. Было выбрано значение интервала времени *dT*, по завершении которого проводилось усреднение полученных результатов, равное $5 \cdot 10^{-15}$ с.

Для материала 4H-SiC значения электрофизических параметров и параметров долин выбирались из данных, представленных в [10, 15]. Концентрация электронов принималась равной $1 \cdot 10^{16}$ см⁻³ и использовалась модель, состоящая из электронных долин вида *M-L-Г* [10]. В разработанной программе с использованием метода Монте Карло для анализа дрейфа электронов в областях, состоящих из материала 4H-SiC, были учтены наиболее важные механизмы рассеяния: на полярных оптических фононах, на примесях, на акустических фононах, междолинное рассеяние между неэквивалентными долинами [13, 15]. При моделировании учитывались долины M_1 и M_2 , величина зазора между которыми определяется величиной равной 0,122 эВ, и долина *L* [15]. Для области структуры, содержащей графен, также дополнительно рассматривалось электрон-электронное рассеивание, анализ которого представлен в [16].

Для исследования процесса переноса электронов в графене использовалась линейная зависимость энергии E от волнового вектора k, что справедливо в области обычно рассматриваемых значений энергии [7, 14]:

$$\mathbf{E} = \hbar \cdot \mathbf{v}_{\mathrm{F}} \cdot \sqrt{k_x^2 + k_y^2 + k_z^2},\tag{1}$$

где k_x , k_y , k_z – компоненты волнового вектора (волновые числа) вдоль координат x, y, z соответственно, v_F – скорость Ферми в графене, величина которой обычно принимается равной $1,0\cdot10^8$ см/с, \hbar – постоянная Планка.

Расчет средней дрейфовой скорости электронов в областях, состоящих из материала 4H-SiC, и для электронов, которые инжектируются в слой графена из смежных областей 1, 3 (рис. 1, a) и области 2 (рис. 1, δ) до момента релаксации с кристаллической структурой, выполнялся по формуле [9, 11]

$$v = \frac{\hbar \cdot k}{m^* (1 + 2 \cdot \alpha \cdot E)}, \qquad (2)$$

где *m*^{*} – относительная эффективная масса электрона, α – коэффициент непараболичности долины. Значения параметров *m*^{*} и α выбирались из значений, представленных в [15].

Метод Монте-Карло используется также для определения коэффициента диффузии D. Если x, y, z – расстояния, пройденные электроном за время t вдоль направлений x, y, z соответственно, то обобщая формулу для расчета коэффициента диффузии D, представленную в [11, 12], на вариант трехмерной структуры, имеем

$$D = \frac{1}{3} \frac{d}{dt} \langle (x - \langle x \rangle) \cdot (y - \langle y \rangle) \cdot (z - \langle z \rangle) \rangle, \qquad (3)$$

где угловые скобки < > обозначают операцию усреднения. Выражение (3) использовалось в разработанной программе для определения коэффициента диффузии *D* путем усреднения данных по всему ансамблю моделируемых электронов.

Расчет подвижности электронов выполнялся по формуле [12]

$$\mu = \frac{\upsilon}{F},\tag{4}$$

где *v* – средняя дрейфовая скорость электронов, *F* – напряженность электрического поля.

Результаты моделирования

Результаты моделирования процессов переноса электронов в одиночном слое графена, который располагается в подвешенном состоянии без подложки, т. е. для варианта, показанного на рис. 1, a, в зависимости от величины напряженности электрического поля F представлены на рис. 2, 3. На этих рисунках представлены результаты расчета параметров переноса электронов как с учетом, так и без учета электрон-электронного рассеивания для области 2, показанной на рис. 1, a, где располагается слой графена.

Рис. 2. Зависимости энергии электронов (*a*) и средней дрейфовой скорости (*б*) от напряженности электрического поля

Рис. 3. Зависимости подвижности (*a*) и коэффициента диффузии (б) электронов от напряженности электрического поля

На рис. 2, *а* показаны зависимости средней энергии электронов от напряженности электрического поля, полученные с учетом (кривая 2, [16]) и без учета (кривая 1) электронэлектронного рассеивания. Видно, что величина средней энергии электронов монотонно возрастает с ростом напряженности электрического поля. Значения величины средней энергии электронов, полученные при учете электрон-электронного рассеивания, при всех значениях напряженности электронного поля меньше значений величины средней энергии, которые получены без учета электрон-электронного рассеивания электронов.

Зависимость средней скорости электронов, полученная с учетом электрон-электронного рассеивания [16], представлена на рис. 2, б. Результаты моделирования показали, что величина средней скорости электронов в отличие от величины средней энергии меняется незначительно при учете электрон-электронного рассеивания. Из анализа этой кривой видно, что среднее значение скорости монотонно возрастает при увеличении величины напряженности электрического поля *F*, оставаясь меньше значения скорости Ферми.

На рис. 3, *а* представлена зависимость подвижности электронов от напряженности электрического поля с учетом электрон-электронного рассеивания. Как видно из этого рисунка, величина подвижности электронов монотонно убывает с ростом напряженности электрического поля. Такой вид зависимости может быть объяснен использованием

формулы (3) для проведения расчетов, когда средняя скорость электронов меняется незначительно, а напряженность электрического поля монотонно возрастает, что и приводит к уменьшению подвижности электронов.

На рис. 3, б показана зависимость коэффициента диффузии электронов от напряженности электричесого поля с учетом электрон-электронного рассеивания. Как видно из этого рисунка, величина коэффициента диффузии электронов монотонно увеличивается при увеличении значений напряженности электрического поля.

Результаты моделирования процессов переноса электронов в трехмерной полупроводниковой структуре, содержащей слой графена, в зависимости от длины структуры, т. е. вдоль координаты x, показанной на рис. 1, a, при величине напряженности F продольного электрического поля, равной 100 кВ/см, представлены на рис. 4, 5, a.

Зависимости средней дрейфовой скорости электронов (кривая 1) и коэффициента диффузии (кривая 2) от длины структуры, полученные в результате моделирования при величине параметра L_d , равном $1 \cdot 10^{-6}$ м, показаны на рис. 4, *a*.

Как показывает анализ кривой 1, представленной на рис. 4, *a*, величина средней дрейфовой скорости электронов остается приблизительно одинаковой и немного меньше значения $1,0\cdot10^8$ см/с в области слоя графена, обозначенной цифрой 2 на рис. 1, *a*, т. е. при значениях $L/L_d > 0,2$ и $L/L_d < 0,8$. В областях истока 1 и стока 3 (рис. 1, *a*), состоящих из материала 4H-SiC, величина средней дрейфовой скорости электронов остается намного меньше величины средней дрейфовой скорости электронов, которой они обладают в слое графена.

Величина коэффициента диффузии электронов *D*, как видно из рис. 4, *a*, кривая 2, остается приблизительно одинаковой и равной 1,38 см²/с в области слоя графена, обозначенной цифрой 2 на рис. 1, *a*, т. е. при значениях $L/L_d > 0,2$ и $L/L_d < 0,8$. Анализ показывает, что величина коэффициента диффузии электронов в областях истока 1 и стока 3 (рис. 1, *a*), состоящих из материала 4H-SiC, остается намного меньше величины коэффициента диффузии электронов, которой они обладают в слое графена.

Рис. 4. Зависимости средней дрейфовой скорости и коэффициента диффузии электронов (*a*) и подвижности электронов (*б*) от относительной длины структуры

На рис. 4, б представлена зависимость подвижности электронов от длины структуры. Как видно из этого рисунка, величина подвижности электронов остается приблизительно одинаковой и равной $0.56 \cdot 10^3 \text{ см}^2/(\text{B} \cdot \text{c})$ в области слоя графена, обозначенной цифрой 2 на рис. 1, *a*, т. е. при значениях $L/L_d > 0.2$ и $L/L_d < 0.8$. Анализ показывает, что величина подвижности электронов в областях истока 1 и стока 3 (рис. 1, *a*), состоящих из материала 4H-SiC, остается намного меньше величины подвижности электронов, которой они обладают в слое графена.

Зависимости средней энергии электронов от длины структуры L/L_d , полученные в результате моделирования, представлены на рис. 5, а при длинах структуры $L_d = 10 \cdot 10^{-6}$ м, $1 \cdot 10^{-6}$ м, $0, 1 \cdot 10^{-6}$ м (кривые 1–3 соответственно). Величина средней энергии электронов

монотонно возрастает в области слоя графена, обозначенной на рис. 1, a цифрой 2, т. е. при значениях $L/L_d > 0,2$ и $L/L_d < 0,8$. Как показывает анализ, величина средней энергии электронов в областях истока и стока 1 и 3 (рис. 1, a), состоящих из материала 4H-SiC, остается намного меньше величины средней энергии электронов, которой они обладают в слое графена, и практически не зависят от длины структуры.

Рис. 5. Зависимость средней энергии электронов от относительной длины структуры (*a*) и средней скорости электронов от напряженности электрического поля (б)

Моделирование средней дрейфовой скорости электронов для второй анализируемой структуры, показанной на рис. 1, *б*, проводилось с использованием формулы [6]

$$v = \frac{I}{e \cdot n_{sh} \cdot w_{sh}},\tag{5}$$

где *е* – заряд электрона, *I* – выходной ток структуры, n_{sh} – поверхностная концентрация электронов в слое графена, w_{sh} – ширина структуры. Величина тока *I* определялась при использовании процедуры метода Монте-Карло, а значения параметров $n_{sh} = 1 \cdot 10^{12}$ см⁻² и $w_{sh} = 5 \cdot 10^{-6}$ м выбирались исходя из данных, представленных в [6]. Зависимость средней дрейфовой скорости электронов, полученная в результате моделирования, показана кривой 2 на рис. 5, б. Экспериментальная кривая, полученная при температуре *T* = 300 K, соответствует величине параметра DLX = $1 \cdot 10^{-5}$ м и для варианта подложки из карбида кремния, сформированной без насыщения атомами водорода (вариант as-grown в [6]), показана кривой 1 на рис. 5, б. Как видно из анализа кривых 1 и 2, представленных на рис. 5, б, наблюдается довольно хорошее соответствие расчетных и экспериментальных данных.

Выполнено моделирование выходного тока для транзисторной структуры, показанной на рис. 6, *a*. На рис. 6, *a* показаны следующие элементы конструкции: 1 – слой графена, 2 – подложка из материала 4H-SiC, 3 – исток, 4 – сток, 5 – затвор, 6 – слой изоляционного материала из оксида кремния. Общая длина структуры (параметр DLX) принималась равной $1 \cdot 10^{-6}$ м, а длина затвора (параметр DAZ) – равной $0,2 \cdot 10^{-6}$ м. Величина постоянного напряжения, которое подавалось на сток относительно истока, принималась равной 1,5 В, а напряжение на затворе изменялось в диапазоне от -1,0 до +1,0 В. Зависимость выходного тока от напряжения на затворе, полученная в результате моделирования, показана на рис. 6, *б* кривой 1, которая соответствует конструкции прибора, показанной на рис. 6, *a*. Аналогично получена кривая 2, показанная на рис. 6, *б*, которая соответствует конструкции прибора, но без наличия слоя графена, представленного цифрой 5 на рис. 6, *a*. Сравнительный анализ кривых 1 и 2, представленных на рис. 6, *б*, показывает, что использование слоя графена позволяет значительно увеличить выходной ток и крутизну выходной характеристики транзистора.

Рис. 6. Структура полупроводникового прибора, содержащего графен, (*a*) и зависимость выходного тока от напряжения на затворе (б)

Заключение

Выполнено процессов моделирование переноса электронов трехмерной в полупроводниковой структуре, содержащей графен. В результате моделирования получены основные характеристики дрейфа электронов – зависимости скорости, средней энергии, подвижности, коэффициента диффузии от длины структуры и напряженности электического поля в полупроводниковых структурах, содержащих слой графена и области из материала 4H-SiC. Полученные значения средней скорости электронов в графене приблизительно в 9 раз больше, чем в материале 4H-SiC, а значения средней подвижности приблизительно в 18-20 раз выше, чем в материале 4H-SiC при значении напряженности электрического поля, равном 100 кВ/см. Такое же соотношение этих параметров наблюдается и при других значениях напряженности электрического поля. Результаты исследований показали, что учет электронэлектронного рассеивания существенно влияет на особенности поведения зависимости средней энергии электронов от напряженности электрического поля. Благодаря использованию графена с такими характеристиками переноса носителей заряда возможно достижение больших плотностей тока в открытом состоянии и высоких значений крутизны (в сравнении транзисторами), что должно обеспечить отличные характеристики с кремниевыми переключения и высокую частоту отсечки. Высокая подвижность и высокая скорость носителей заряда делает графен перспективным материалом для создания новых полупроводниковых приборов с хорошими выходными характеристиками. Результаты моделирования средней дрейфовой скорости электронов в исследованной структуре показали хорошее соответствие экспериментальным данным. Показано, что использование слоя графена позволяет значительно увеличить выходной ток и крутизну выходной характеристики исследуемых транзисторов.

Список литературы

- 1. Top-Gated Epitaxial FETs on SiC-Face SiC Wafers with a Peak Transconductance of 600 mS/mm / J.S. Moon [et al.] // IEEE Electron Device Letters. 2010. Vol. 31. P. 260–262.
- 2. Lateral Graphene Heterostructure Field-Effect Transistor / J.S. Moon [et al.] // IEEE Electron Device Letters. 2013. Vol. 34, iss. 9. P. 1190–1192.
- 3. Туннельные полевые транзисторы на основе графена / Д.А. Свинцов [и др.] // Физика и техника полупроводников. 2013. Т. 47, вып. 2. С. 244–250.
- 4. Мищенко В.Н. Моделирование средней дрейфовой скорости электронов в одномерной структуре из арсенида галлия // Докл. БГУИР. 2015. № 8 (94). С. 99–102.
- 5. First-principles analysis of electron-phonon interaction in grapheme / K.M. Borysenko [et al.] // Physical Review. 2010. Vol. B 81. P. 121412(R).
- 6. A temperature dependent measurement of the carrier velocity vs. electric field characteristic for as-grown and H-intercalated epitaxial graphene on SiC / M. Winters [et al.] // Appl. Phys. 2013. Vol. 113. P. 193708.
- 7. Chauhan Jyotsna, Guo Jing. High-field transport and velocity saturation in grapheme // Appl. Phys. Letters. 2009. Vol. 95. P. 023120.
- 8. Vasileska D., Goodnick S.M. Computational Electronics. Morgan and Claypool, 2006. 2016 p.
- 9. Fawcett W., Boardman D.A., Swain S. Monte Carlo determination of electron transport properties in gallium arsenide // J. of Physical Chemistry Solids. 1970. Vol. 31. P. 1963–1990.

- 10. Persson C., Lindefelt U. Dependence of energy gaps and effective masses on atomic positions in hexagonal SiC // Appl. Phys. 1997. Vol. 86, № 11. P. 5036–5039.
- 11. Hockney R., Eastwood J. Numerical simulation using particles. M., 1987. 640 p.
- 12. Шур М. Современные приборы на основе арсенида галлия. М.: Мир, 1991. 632 с.
- 13. Мищенко В.Н. Трехмерное моделирование выходных характеристик GaAs транзисторов с субмикронной длиной затвора // Докл. БГУИР. 2016. № 6 (100). С. 113–116.
- 14. High-field transport in two-dimensional grapheme / Fang Tian [et al.] // Physical Review. 2011. Vol. B 84. P. 125450.
- 15. Муравьев В.В., Мищенко В.Н. Моделирование процессов переноса электронов в полупроводниковой структуре из карбида кремния // Докл. БГУИР. 2017. № 2 (104). С. 53–57.
- 16. Муравьев В.В., Мищенко В.Н. Определение интенсивностей рассеивания электронов в одиночном слое графена // Докл. БГУИР. 2017. № 6 (108). С. 42–47.

References

- 1. Top-Gated Epitaxial FETs on SiC-Face SiC Wafers with a Peak Transconductance of 600 mS/mm / J.S. Moon [et al.] // IEEE Electron Device Letters. 2010. Vol. 31. P. 260–262.
- 2. Lateral Graphene Heterostructure Field-Effect Transistor / J.S. Moon [et al.] // IEEE Electron Device Letters. 2013. Vol. 34, iss. 9. P. 1190–1192.
- 3. Tunnel'nye polevye tranzistory na osnove grafena / D.A. Svincov [i dr.] // Fizika i tehnika poluprovodnikov. 2013. T. 47, vyp. 2. S. 244–250. (in Russ.)
- Mishhenko V.N. Modelirovanie srednej drejfovoj skorosti jelektronov v odnomernoj strukture iz arsenide gallija // Dokl. BGUIR. 2015. № 8 (94). C. 99–102. (in Russ.)
- 5. First-principles analysis of electron-phonon interaction in grapheme / K.M. Borysenko [et al.] // Physical Review. 2010. Vol. B 81. P. 121412(R).
- 6. A temperature dependent measurement of the carrier velocity vs. electric field characteristic for as-grown and H-intercalated epitaxial graphene on SiC / M. Winters [et al.] // Appl. Phys. 2013. Vol. 113. P. 193708.
- 7. Chauhan Jyotsna, Guo Jing. High-field transport and velocity saturation in grapheme // Appl. Phys. Letters. 2009. Vol. 95. P. 023120.
- 8. Vasileska D., Goodnick S.M. Computational Electronics. Morgan and Claypool, 2006. 2016 p.
- 9. Fawcett W., Boardman D.A., Swain S. Monte Carlo determination of electron transport properties in gallium arsenide // J. of Physical Chemistry Solids. 1970. Vol. 31. P. 1963–1990.
- Persson C., Lindefelt U. Dependence of energy gaps and effective masses on atomic positions in hexagonal SiC. J. Appl. Phys. 1997. Vol. 86, № 11. P. 5036–5039.
- 11. Hockney R., Eastwood J. Numerical simulation using particles. M., 1987. 640 p.
- 12. Shur M. Sovremennye pribory na osnove arsenida gallija. M.: Mir, 1991. 632 s. (in Russ.)
- 13. Mishhenko V.N. Trehmernoe modelirovanie vyhodnyh harakteristik GaAs tranzistorov s submikronnoj dlinoj zatvora // Dokl. BGUIR. 2016. № 6 (100). C. 113–116. (in Russ.)
- 14. High-field transport in two-dimensional grapheme / Fang Tian [et al.] // Physical Review. 2011. Vol. B 84. P. 125450.
- 15. Murav'ev V.V., Mishhenko V.N. Modelirovanie processov perenosa jelektronov v poluprovodnikovoj strukture iz karbida kremnija // Dokl. BGUIR. 2017. № 2 (104). C. 53–57. (in Russ.)
- 16. Murav'ev V.V., Mishhenko V.N. Opredelenie intensivnostej rasseivanija jelektronov v odinochnom sloe grafena // Dokl. BGUIR. 2017. № 6 (108). C. 42–47. (in Russ.)

Сведения об авторах

Муравьев В.В., д.т.н., профессор Белорусского государственного университета информатики и радиоэлектроники.

Мищенко В.Н., к.т.н., доцент Белорусского государственного университета информатики и радиоэлектроники.

Адрес для корреспонденции

220013, Республика Беларусь, г. Минск, ул. П. Бровки, 6, Белорусский государственный университет информатики и радиоэлектроники тел. +375-17-293-80-70; e-mail: mishchenko@bsuir.by Мищенко Валерий Николаевич

Information about the authors

Murav'ev V.V., D.Sci, professor of Belarusian state university of informatics and radioelectronics.

Mishchenka V.N., PhD., associate professor of Belarusian state university of informatics and radioelectronics.

Address for correspondence

220013, Republic of Belarus, Minsk, P. Brovka st., 6, Belarusian state university of informatics and radioelectronics tel. +375-17-293-80-70; e-mail: mishchenko@bsuir.by Mishchenka Valery Nickolaevich